This book is based on lectures from a one-year course at the Far Eastern Federal University (Vladivostok, Russia) as well as on workshops on optimal control offered to students at various mathematical departments at the university level. The main themes of the theory of linear and nonlinear systems are considered, including the basic problem of establishing the necessary and sufficient conditions of optimal processes.In the first part of the course, the theory of linear control systems is constructed on the basis of the separation theorem and the concept of a reachability set. The authors prove the closure of a reachability set in the class of piecewise continuous controls, and the problems of controllability, observability, identification, performance and terminal control are also considered. The second part of the course is devoted to nonlinear control systems. Using the method of variations and the Lagrange multipliers rule of nonlinear problems, the authors prove the Pontryagin maximum principle for problems with mobile ends of trajectories. Further exercises and a large number of additional tasks are provided for use as practical training in order for the reader to consolidate the theoretical material.
Les mer
This book is based on lectures from a one-year course at the Far Eastern Federal University (Vladivostok, Russia) as well as on workshops on optimal control offered to students at various mathematical departments at the university level.
Les mer
NOTATIONS.- PREFACE.- INTRODUCTION.- 1. Subject of optimal control.- 2. Mathematical model of controlled object.- 3. Reachability set.- 4. Controllability of linear systems.- 5. Minimum time problem.- 6. Synthesis of optimal system performance.- 7. The observability problem.- 8. Identification problem.- 9. Types of optimal control problems.- 10. Small increments of a trajectory.- 11. The simplest problem of optimal control.- 12. General optimal control problem.- 13. Sufficient optimality conditions.- CONCLUSION.- APPENDIX.- EXAMPLES OF TASKS AND SOLUTIONS.- LITERATURE.
Les mer
This book is based on lectures from a one-year course at the Far Eastern Federal University (Vladivostok, Russia) as well as on workshops on optimal control offered to students at various mathematical departments at the university level. The main themes of the theory of linear and nonlinear systems are considered, including the basic problem of establishing the necessary and sufficient conditions of optimal processes.In the first part of the course, the theory of linear control systems is constructed on the basis of the separation theorem and the concept of a reachability set. The authors prove the closure of a reachability set in the class of piecewise continuous controls, and the problems of controllability, observability, identification, performance and terminal control are also considered. The second part of the course is devoted to nonlinear control systems. Using the method of variations and the Lagrange multipliers rule of nonlinear problems, the authors prove the Pontryagin maximum principle for problems with mobile ends of trajectories. Further exercises and a large number of additional tasks are provided for use as practical training in order for the reader to consolidate the theoretical material.
Les mer
Offers thorough examination of control of linear systems and of nonlinear systems Includes numerous exercises and tasks to help students apply the material as well as selected solutions Perfect for a graduate, in-depth course on optimal control Includes supplementary material: sn.pub/extras
Les mer
Produktdetaljer
ISBN
9783319842400
Publisert
2018-04-30
Utgiver
Vendor
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Graduate, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Om bidragsyterne
Leonid Aschepkov is a professor in the Department of Mathematical Methods of Economy at Far Eastern Federal University.Dmitriy V. Dolgy is a professor at the Institute of Natural Sciences at Far Eastern Federal University in Vladivolstok, Russia and at Hanrimwon, Kwangwoon University in Seoul, Republic of Korea.
Taekyun Kim is a professor in the Department of Mathematics at the College ofNatural Science at Kwangwoon University.
Ravi P. Agarwal is a professor and the chair of the Department of Mathematics at Texas A&M University.