Preface xix Series Preface xxi Road Map of the Book xxiii Acknowledgements xxvii Nomenclature xxxi Introduction 1 1.1 Overview 1 1.2 Brief Historical Background 1 1.2.1 Flight in Mythology 1 1.2.2 Fifteenth to Nineteenth Centuries 1 1.2.3 From 1900 to World War I (1914) 3 1.2.4 World War I (1914â1918) 4 1.2.5 The InterâWar Period: the Golden Age (1918â1939) 7 1.2.6 World War II (1939â1945) 7 1.2.7 Post World War II 8 1.3 Current Aircraft Design Status 8 1.3.1 Current Civil Aircraft Trends 9 1.3.2 Current Military Aircraft Trends 10 1.4 Future Trends 11 1.4.1 Trends in Civil Aircraft 11 1.4.2 Trends in Military Aircraft 13 1.4.3 Forces and Drivers 14 1.5 Airworthiness Requirements 14 1.6 Current Aircraft Performance Analyses Levels 16 1.7 Market Survey 17 1.8 Typical Design Process 19 1.8.1 Four Phases of Aircraft Design 19 1.9 Classroom Learning Process 23 1.10 Cost Implications 25 1.11 Units and Dimensions 26 1.12 Use of Semiâempirical Relations and Graphs 26 1.13 How Do Aircraft Fly? 26 1.13.1 Classification of Flight Mechanics 27 1.14 Anatomy of Aircraft 27 1.14.1 Comparison between Civil and Military Design Requirements 30 1.15 Aircraft Motion and Forces 30 1.15.1 Motion â Kinematics 31 1.15.2 Forces â Kinetics 33 1.15.3 Aerodynamic Parameters â Lift, Drag and Pitching Moment 34 1.15.4 Basic Controls â Sign Convention 34 References 36 2 Aerodynamic and Aircraft Design Considerations 37 2.1 Overview 37 2.2 Introduction 37 2.3 Atmosphere 39 2.3.1 Hydrostatic Equations and Standard Atmosphere 39 2.3.2 Nonâstandard/Offâstandard Atmosphere 47 2.3.3 Altitude Definitions â Density Altitude (Offâstandard) 48 2.3.4 Humidity Effects 50 2.3.5 Greenhouse Gases Effect 50 2.4 Airflow Behaviour: Laminar and Turbulent 51 2.4.1 Flow Past an Aerofoil 55 2.5 Aerofoil 56 2.5.1 Subsonic Aerofoil 57 2.5.2 Supersonic Aerofoil 64 2.6 Generation of Lift 64 2.6.1 Centre of Pressure and Aerodynamic Centre 66 2.6.2 Relation between Centre of Pressure and Aerodynamic Centre 68 2.7 Types of Stall 71 2.7.1 Buffet 71 2.8 Comparison of Three NACA Aerofoils 72 2.9 HighâLift Devices 73 2.10 Transonic Effects â Area Rule 74 2.10.1 Compressibility Correction 75 2.11 Wing Aerodynamics 76 2.11.1 Induced Drag and Total Aircraft Drag 79 2.12 Aspect Ratio Correction of 2DâAerofoil Characteristics for 3DâFinite Wing 79 2.13 Wing Definitions 81 2.13.1 Planform Area, S W 81 2.13.2 Wing Aspect Ratio 82 2.13.3 WingâSweep Angle 82 2.13.4 Wing Root (c root) and Tip (c tip) Chords 82 2.13.5 WingâTaper Ratio, Îť 82 2.13.6 Wing Twist 82 2.13.7 High/Low Wing 83 2.13.8 Dihedral/Anhedral Angles 83 2.14 Mean Aerodynamic Chord 84 2.15 Compressibility Effect: Wing Sweep 86 2.16 WingâStall Pattern and Wing Twist 87 2.17 Influence of Wing Area and Span on Aerodynamics 88 2.17.1 The SquareâCube Law 88 2.17.2 Aircraft Wetted Area (A W) versus Wing Planform Area (S W)89 2.17.3 Additional Wing Surface Vortex Lift â Strake/Canard 90 2.17.4 Additional Surfaces on Wing â Flaps/Slats and HighâLift Devices 91 2.17.5 Other Additional Surfaces on Wing 91 2.18 Empennage 92 2.18.1 Tailâarm 95 2.18.2 Horizontal Tail (HâTail) 95 2.18.3 Vertical Tail (VâTail) 96 2.18.4 TailâVolume Coefficients 96 2.19 Fuselage 98 2.19.1 Fuselage Axis/ZeroâReference Plane 98 2.19.2 Fuselage Length, L fus 98 2.19.3 Fineness Ratio, FR 99 2.19.4 Fuselage Upsweep Angle 99 2.19.5 Fuselage Closure Angle 99 2.19.6 Front Fuselage Closure Length, L f 99 2.19.7 Aft Fuselage Closure Length, L a 99 2.19.8 MidâFuselage Constant CrossâSection length, l m 99 2.19.9 Fuselage Height, H 99 2.19.10 Fuselage Width, W 100 2.19.11 Average Diameter, D ave 100 2.20 Nacelle and Intake 100 2.20.1 Large Commercial/Military Logistic and Old Bombers Nacelle Group 101 2.20.2 Small Civil Aircraft Nacelle Position 103 2.20.3 Intake/Nacelle Group (Military Aircraft) 104 2.20.4 Futuristic Aircraft Nacelle Positions 106 2.21 Speed Brakes and Dive Brakes 106 References 106 3 Air Data Measuring Instruments, Systems and Parameters 109 3.1 Overview 109 3.2 Introduction 109 3.3 Aircraft Speed 110 3.3.1 Definitions Related to Aircraft Velocity 111 3.3.2 Theory Related to Computing Aircraft Velocity 112 3.3.3 Aircraft Speed in Flight Deck Instruments 116 3.3.4 Atmosphere with Wind Speed (Nonâzero Wind) 117 3.3.5 Calibrated Airspeed 118 3.3.6 Compressibility Correction (âV c ) 120 3.3.7 Other Position Error Corrections 122 3.4 Air Data Instruments 122 3.4.1 Altitude Measurement â Altimeter 123 3.4.2 Airspeed Measuring Instrument â PitotâStatic Tube 125 3.4.3 AngleâofâAttack Probe 126 3.4.4 Vertical Speed Indicator 126 3.4.5 Temperature Measurement 127 3.4.6 TurnâSlip Indicator 127 3.5 Aircraft FlightâDeck (Cockpit) Layout 128 3.5.1 Multifunctional Displays and Electronic Flight Information Systems 129 3.5.2 Combat Aircraft Flight Deck 131 3.5.3 HeadâUp Display (HUD) 132 3.6 Aircraft Mass (Weights) and Centre of Gravity 133 3.6.1 Aircraft Mass (Weights) Breakdown 133 3.6.2 Desirable CG Position 134 3.6.3 Weights Summary â Civil Aircraft 136 3.6.4 CG Determination â Civil Aircraft 137 3.6.5 Bizjet Aircraft CG Location â Classroom Example 138 3.6.6 Weights Summary â Military Aircraft 138 3.6.7 CG Determination â Military Aircraft 138 3.6.8 Classroom Worked Example â Military AJT CG Location 138 3.7 Noise Emissions 141 3.7.1 Airworthiness Requirements 142 3.7.2 Summary 145 3.8 EngineâExhaust Emissions 145 3.9 Aircraft Systems 146 3.9.1 Aircraft Control System 146 3.9.2 ECS: Cabin Pressurization and AirâConditioning 148 3.9.3 Oxygen Supply 149 3.9.4 Antiâicing, Deâicing, Defogging and Rain Removal System 149 3.10 Low Observable (LO) Aircraft Configuration 150 3.10.1 Heat Signature 150 3.10.2 Radar Signature 150 References 152 4 Equations of Motion for a Flat Stationary Earth 153 4.1 Overview 153 4.2 Introduction 154 4.3 Definitions of Frames of Reference (Flat Stationary E arth) and Nomenclature Used 154 4.3.1 Notation and Symbols Used in this Chapter 157 4.4 Eulerian Angles 158 4.4.1 Transformation of Eulerian Angles 159 4.5 Simplified Equations of Motion for a Flat Stationary Earth 161 4.5.1 Important Aerodynamic Angles 161 4.5.2 In Pitch Plane (Vertical XZ Plane) 162 4.5.3 In Yaw Plane (Horizontal Plane) â Coordinated Turn 164 4.5.4 In PitchâYaw Plane â Coordinated ClimbâTurn (Helical Trajectory) 165 4.5.5 Discussion on Turn 166 Reference 167 5 Aircraft Load 169 5.1 Overview 169 5.2 Introduction 169 5.2.1 Buffet 170 5.2.2 Flutter 170 5.3 Flight Manoeuvres 171 5.3.1 Pitch Plane (XâZ) Manoeuvre 171 5.3.2 Roll Plane (YâZ) Manoeuvre 171 5.3.3 Yaw Plane (YâX) Manoeuvre 171 5.4 Aircraft Loads 171 5.5 Theory and Definitions 172 5.5.1 Load Factor, n 172 5.6 Limits â Loads and Speeds 173 5.6.1 Maximum Limit of Load Factor 174 5.7 Vân Diagram174 5.7.1 Speed Limits 175 5.7.2 Extreme Points of the Vân Diagram 175 5.7.3 Low Speed Limit 177 5.7.4 Manoeuvre Envelope Construction 178 5.7.5 High Speed Limit 179 5.8 Gust Envelope 179 5.8.1 Gust Load Equations 180 5.8.2 Gust Envelope Construction 182 Reference 183 6 Stability Considerations Affecting Aircraft Performance 185 6.1 Overview 185 6.2 Introduction 185 6.3 Static and Dynamic Stability 186 6.3.1 Longitudinal Stability â Pitch Plane (Pitch Moment, M)188 6.3.2 Directional Stability â Yaw Plane (Yaw Moment, N)188 6.3.3 Lateral Stability â Roll Plane (Roll Moment, L)189 6.4 Theory 192 6.4.1 Pitch Plane 192 6.4.2 Yaw Plane 195 6.4.3 Roll Plane 196 6.5 Current Statistical Trends for Horizontal and Vertical Tail Coefficients197 6.6 Inherent Aircraft Motions as Characteristics of Design 198 6.6.1 ShortâPeriod Oscillation and Phugoid Motion 198 6.6.2 Directional/Lateral Modes of Motion 200 6.7 Spinning 202 6.8 Summary of Design Considerations for Stability 203 6.8.1 Civil Aircraft 203 6.8.2 Military Aircraft â Nonâlinear Effects 204 6.8.3 Active Control Technology (ACT) â FlyâbyâWire 205 References 207 7 Aircraft Power Plant and Integration 209 7.1 Overview 209 7.2 Background 209 7.3 Definitions 214 7.4 AirâBreathing Aircraft Engine Types 215 7.4.1 Simple Straightâthrough Turbojets 215 7.4.2 Turbofan â Bypass Engine 216 7.4.3 Afterburner Jet Engines 216 7.4.4 Turboprop Engines 218 7.4.5 Piston Engines 218 7.5 Simplified Representation of Gas Turbine (Brayton/Joule) Cycle 219 7.6 Formulation/Theory â Isentropic Case 221 7.6.1 Simple Straightâthrough Turbojets 221 7.6.2 Bypass Turbofan Engines 222 7.6.3 Afterburner Jet Engines 224 7.6.4 Turboprop Engines 226 7.7 Engine Integration to Aircraft â Installation Effects 226 7.7.1 Subsonic Civil Aircraft Nacelle and Engine Installation 227 7.7.2 Turboprop Integration to Aircraft 229 7.7.3 Combat Aircraft Engine Installation 230 7.8 Intake/Nozzle Design 231 7.8.1 Civil Aircraft Intake Design 231 7.8.2 Military Aircraft Intake Design 232 7.9 Exhaust Nozzle and Thrust Reverser 233 7.9.1 Civil Aircraft Exhaust Nozzles 233 7.9.2 Military Aircraft TR Application and Exhaust Nozzles 233 7.10 Propeller 234 7.10.1 PropellerâRelated Definitions 236 7.10.2 Propeller Theory 237 7.10.3 Propeller Performance â Practical Engineering Applications 243 7.10.4 Propeller Performance â Threeâ to FourâBladed 246 References 246 8 Aircraft Power Plant Performance 247 8.1 Overview 247 8.2 Introduction 248 8.2.1 Engine Performance Ratings 248 8.2.2 Turbofan Engine Parameters 249 8.3 Uninstalled Turbofan Engine Performance Data â Civil Aircraft 250 8.3.1 Turbofans with BPR around 4 252 8.3.2 Turbofans with BPR around 5â6 252 8.4 Uninstalled Turbofan Engine Performance Data â Military Aircraft 254 8.5 Uninstalled Turboprop Engine Performance Data 255 8.5.1 Typical Turboprop Performance 257 8.6 Installed Engine Performance Data of Matched Engines to Coursework Aircraft 257 8.6.1 Turbofan Engine (Smaller Engines for Bizjets â BPR â 4)257 8.6.2 Turbofans with BPR around 5â6 (Larger Jets) 260 8.6.3 Military Turbofan (Very Low BPR)260 8.7 Installed Turboprop Performance Data 261 8.7.1 Typical Turboprop Performance 261 8.7.2 Propeller Performance â Worked Example 262 8.8 Piston Engine 264 8.9 Engine Performance Grid 267 8.9.1 Installed Maximum Climb Rating (TFE 731â20 Class Turbofan) 269 8.9.2 Maximum Cruise Rating (TFE731â20 Class Turbofan) 270 8.10 Some Turbofan Data 272 Reference 273 9 Aircraft Drag 275 9.1 Overview 275 9.2 Introduction 275 9.3 Parasite Drag Definition 277 9.4 Aircraft Drag Breakdown (Subsonic) 278 9.5 Aircraft Drag Formulation 279 9.6 Aircraft Drag Estimation Methodology 281 9.7 Minimum Parasite Drag Estimation Methodology 281 9.7.1 Geometric Parameters, Reynolds Number and Basic C F Determination 282 9.7.2 Computation of Wetted Area 283 9.7.3 Stepwise Approach to Computing Minimum Parasite Drag 283 9.8 SemiâEmpirical Relations to Estimate Aircraft Component Parasite Drag 284 9.8.1 Fuselage 284 9.8.2 Wing, Empennage, Pylons and Winglets 287 9.8.3 Nacelle Drag 289 9.8.4 Excrescence Drag 293 9.8.5 Miscellaneous Parasite Drags 294 9.9 Notes on Excrescence Drag Resulting from Surface Imperfections 295 9.10 Minimum Parasite Drag 296 9.11 ÎCDp Estimation 296 9.12 Subsonic Wave Drag 296 9.13 Total Aircraft Drag 298 9.14 LowâSpeed Aircraft Drag at Takeoff and Landing 298 9.14.1 HighâLift Device Drag 298 9.14.2 Dive Brakes and Spoilers Drag 302 9.14.3 Undercarriage Drag 302 9.14.4 OneâEngine Inoperative Drag 303 9.15 PropellerâDriven Aircraft Drag 304 9.16 Military Aircraft Drag 304 9.17 Supersonic Drag 305 9.18 Coursework Example â Civil Bizjet Aircraft 306 9.18.1 Geometric and Performance Data 306 9.18.2 Computation of Wetted Areas, Re and Basic C F 309 9.18.3 Computation of 3D and Other Effects 310 9.18.4 Summary of Parasite Drag 314 9.18.5 ÎC Dp Estimation 314 9.18.6 Induced Drag 314 9.18.7 Total Aircraft Drag at LRC 314 9.19 Classroom Example â Subsonic Military Aircraft (Advanced Jet Trainer) 315 9.19.1 AJT Specifications 317 9.19.2 CAS Variant Specifications 318 9.19.3 Weights 319 9.19.4 AJT Details 319 9.20 Classroom Example â Turboprop Trainer 319 9.20.1 TPT Specification 320 9.20.2 TPT Details 321 9.20.3 Component Parasite Drag Estimation 322 9.21 Classroom Example â Supersonic Military Aircraft 325 9.21.1 Geometric and Performance Data for the Vigilante RAâC5 Aircraft 325 9.21.2 Computation of Wetted Areas, Re and Basic C F 326 9.21.3 Computation of 3D and Other Effects to Estimate Component C Dpmin 327 9.21.4 Summary of Parasite Drag 329 Estimation 329 9.21.6 Induced Drag 330 9.21.7 Supersonic Drag Estimation 330 9.21.8 Total Aircraft Drag 332 9.22 Drag Comparison 332 9.23 Some Concluding Remarks and Reference Figures 334 References 338 10 Fundamentals of Mission Profile, Drag Polar and Aeroplane Grid 339 10.1 Overview 339 10.2 Introduction 340 10.2.1 Evolution in Aircraft Performance Capabilities 341 10.2.2 Levels of Aircraft Performance Analyses 342 10.3 Civil Aircraft Mission (PayloadâRange) 342 10.3.1 Civil Aircraft Classification and Mission Segments 344 10.4 Military Aircraft Mission 345 10.4.1 Military Aircraft Performance Segments 347 10.5 Aircraft Flight Envelope 349 10.6 Understanding Drag Polar 351 10.6.1 Actual Drag Polar 351 10.6.2 Parabolic Drag Polar 351 10.6.3 Comparison between Actual and Parabolic Drag Polar 352 10.7 Properties of Parabolic Drag Polar 354 10.7.1 The Maximum and Minimum Conditions Applicable to Parabolic Drag Polar 354 10.7.2 PropellerâDriven Aircraft 359 10.8 Classwork Examples of Parabolic Drag Polar 363 10.8.1 Bizjet Market Specifications 363 10.8.2 Turboprop Trainer Specifications 363 10.8.3 Advanced Jet Trainer Specifications 365 10.8.4 Comparison of Drag Polars 366 10.9 Bizjet Actual Drag Polar 366 10.9.1 Comparing Actual with Parabolic Drag Polar 367 10.9.2 (Lift/Drag) and (Mach Ă Lift/Drag) Ratios 368 10.9.3 Velocity at Minimum (D/V) 369 10.9.4 (Lift/Drag) max , C L @ (L/D)max and V Dmin 369 10.9.5 Turboprop Trainer (TPT) Example â Parabolic Drag Polar 370 10.9.6 TPT (Lift/Drag) max , C L@(L/D)max and V Dmin 370 10.9.7 TPT (ESHP) min_reqd and V Pmin 371 10.9.8 Summary for TPT 372 10.10 Aircraft and Engine Grid 372 10.10.1 Aircraft and Engine Grid (Jet Aircraft) 373 10.10.2 Classwork Example â Bizjet Aircraft and Engine Grid 374 10.10.3 Aircraft and Engine Grid (Turboprop Trainer) 376 References 378 11 Takeoff and Landing 379 11.1 Overview 379 11.2 Introduction 380 11.3 Airfield Definitions 380 11.3.1 Stopway (SWY) and Clearway (CWY) 381 11.3.2 Available Airfield Definitions 382 11.3.3 Actual Field Length Definitions 383 11.4 Generalized Takeoff Equations of Motion 384 11.4.1 Ground Run Distance 386 11.4.2 Time Taken for the Ground Run S G 388 11.4.3 Flare Distance and Time Taken from V R to V 2 388 11.4.4 Ground Effect 389 11.5 Friction â Wheel Rolling and Braking Friction Coefficients 389 11.6 Civil Transport Aircraft Takeoff 391 11.6.1 Civil Aircraft Takeoff Segments 391 11.6.2 Balanced Field Length (BFL) â Civil Aircraft 395 11.6.3 Flare to 35 ft Height (Average Speed Method) 396 11.7 Worked Example â Bizjet 396 11.7.1 AllâEngine Takeoff 398 11.7.2 Flare from V R to V 2 398 11.7.3 Balanced Field Takeoff â One Engine Inoperative 399 11.8 Takeoff Presentation 404 11.8.1 Weight, Altitude and Temperature Limits 405 11.9 Military Aircraft Takeoff 405 11.10 Checking Takeoff Field Length (AJT)406 11.10.1 AJT Aircraft and Aerodynamic Data 406 11.10.2 Takeoff with 8° Flap 408 11.11 Civil Transport Aircraft Landing 409 11.11.1 Airfield Definitions 409 11.11.2 Landing Performance Equations 412 11.11.3 Landing Field Length for the Bizjet 414 11.11.4 Landing Field Length for the AJT 416 11.12 Landing Presentation 417 11.13 Approach Climb and Landing Climb 418 11.14 Fuel Jettisoning 418 References 418 12 Climb and Descent Performance 419 12.1 Overview 419 12.2 Introduction 420 12.2.1 Cabin Pressurization 421 12.2.2 Aircraft Ceiling 421 12.3 Climb Performance 422 12.3.1 Climb Performance Equations of Motion 423 12.3.2 Accelerated Climb 423 12.3.3 Constant EAS Climb 425 12.3.4 Constant Mach Climb 427 12.3.5 Unaccelerated Climb 428 12.4 Other Ways to Climb (Point Performance) â Civil Aircraft 428 12.4.1 Maximum Rate of Climb and Maximum Climb Gradient 428 12.4.2 Steepest Climb 432 12.4.3 Economic Climb at Constant EAS 433 12.4.4 Discussion on Climb Performance 434 12.5 Classwork Example â Climb Performance (Bizjet) 435 12.5.1 Takeoff Segments Climb Performance (Bizjet) 435 12.5.2 EnâRoute Climb Performance (Bizjet) 439 12.5.3 Bizjet Climb Schedule 440 12.6 Hodograph Plot 440 12.6.1 Aircraft Ceiling 443 12.7 Worked Example â Bizjet 443 12.7.1 Bizjet Climb Rate at Normal Climb Speed Schedule 443 12.7.2 Rate of Climb Performance versus Altitude 444 12.7.3 Bizjet Ceiling 444 12.8 Integrated Climb Performance â Computational Methodology 444 12.8.1 Worked Example â Initial EnâRoute Rate of Climb (Bizjet) 446 12.8.2 Integrated Climb Performance (Bizjet) 447 12.8.3 Turboprop Trainer Aircraft (TPT) 447 12.9 Specific Excess Power (SEP) â HighâEnergy Climb 447 12.9.1 Specific Excess Power Characteristics 450 12.9.2 Worked Example of SEP Characteristics (Bizjet) 450 12.9.3 Example of AJT 453 12.9.4 Supersonic Aircraft 453 12.10 Descent Performance 454 12.10.1 Glide 457 12.10.2 Descent Properties 458 12.10.3 Selection of Descent Speed 458 12.11 Worked Example â Descent Performance (Bizjet) 459 12.11.1 Limitation of Maximum Descent Rate 460 References 462 13 Cruise Performance and Endurance 463 13.1 Overview 463 13.2 Introduction 464 13.2.1 Definitions 465 13.3 Equations of Motion for the Cruise Segment 466 13.4 Cruise Equations 466 13.4.1 PropellerâDriven Aircraft Cruise Equations 467 13.4.2 Jet Engine Aircraft Cruise Equations 469 13.5 Specific Range 470 13.6 Worked Example (Bizjet) 471 13.6.1 Aircraft and Engine Grid at Cruise Rating 471 13.6.2 Specific Range Using Actual Drag Polar 471 13.6.3 Specific Range and Range Factor 473 13.7 Endurance Equations 478 13.7.1 PropellerâDriven (Turboprop) Aircraft 479 13.7.2 Turbofan Powered Aircraft 480 13.8 Options for Cruise Segment (Turbofan Only) 481 13.9 Initial Maximum Cruise Speed (Bizjet) 487 13.10 Worked Example of AJT â Military Aircraft 488 13.10.1 To Compute the AJT Fuel Requirement 488 13.10.2 To Check Maximum Speed 488 References 489 14 Aircraft Mission Profile 491 14.1 Overview 491 14.2 Introduction 492 14.3 PayloadâRange Capability 493 14.3.1 Reserve Fuel 493 14.4 The Bizjet PayloadâRange Capability 495 14.4.1 LongâRange Cruise (LRC) at Constant Altitude 496 14.4.2 HighâSpeed Cruise (HSC) at Constant Altitude and Speed 500 14.4.3 Discussion on Cruise Segment 501 14.5 Endurance (Bizjet) 502 14.6 Effect of Wind on Aircraft Mission Performance 502 14.7 Engine Inoperative Situation at Climb and Cruise â DriftâDown Procedure 503 14.7.1 Engine Inoperative Situation at Climb 503 14.7.2 Engine Inoperative Situation at Cruise (Figure 14.5)504 14.7.3 Point of NoâReturn and Equal Time Point 505 14.7.4 Engine Data 505 14.7.5 DriftâDown in Cruise 505 14.8 Military Missions 506 14.8.1 Military Training Mission Profile â Advanced Jet Trainer (AJT) 506 14.9 Flight Planning by the Operators 507 References 508 15 Manoeuvre Performance 509 15.1 Overview 509 15.2 Introduction 509 15.3 Aircraft Turn 510 15.3.1 In Horizontal (Yaw) Plane â Sustained Coordinated Turn 510 15.3.2 Maximum Conditions for Turn in Horizontal Plane 516 15.3.3 Minimum Radius of Turn in Horizontal Plane 517 15.3.4 Turning in Vertical (Pitch) Plane 517 15.3.5 In PitchâYaw Plane â Climbing Turn in Helical Path 519 15.4 Classwork Example â AJT 520 15.5 Aerobatics Manoeuvre 522 15.5.1 Lazyâ8 in Horizontal Plane 523 15.5.2 Chandelle 524 15.5.3 Slow Roll 524 15.5.4 Hesitation Roll 524 15.5.5 Barrel Roll 525 15.5.6 Loop in Vertical Plane 525 15.5.7 Immelmann â Roll at the Top in the Vertical Plane 526 15.5.8 Stall Turn in Vertical Plane 527 15.5.9 CubanâEight in Vertical Plane 527 15.5.10 Pugachevâs Cobra Movement 528 15.6 Combat Manoeuvre 528 15.6.1 Basic Fighter Manoeuvre 528 15.7 Discussion on Turn 530 References 531 16 Aircraft Sizing and Engine Matching 533 16.1 Overview 533 16.2 Introduction 534 16.3 Theory 535 16.3.1 Sizing for Takeoff Field Length â Two Engines 536 16.3.2 Sizing for the Initial Rate of Climb (All Engines Operating) 539 16.3.3 Sizing to Meet Initial Cruise 540 16.3.4 Sizing for Landing Distance 540 16.4 Coursework Exercises: Civil Aircraft Design (Bizjet) 541 16.4.1 Takeoff 541 16.4.2 Initial Climb 542 16.4.3 Cruise 542 16.4.4 Landing 543 16.5 Sizing Analysis: Civil Aircraft (Bizjet) 543 16.5.1 Variants in the Family of Aircraft Design 544 16.5.2 Example: Civil Aircraft 545 16.6 Classroom Exercise â Military Aircraft (AJT) 546 16.6.1 Takeoff 546 16.6.2 Initial Climb 546 16.6.3 Cruise 547 16.6.4 Landing 548 16.6.5 Sizing for Turn Requirement of 4 g at SeaâLevel 548 16.7 Sizing Analysis â Military Aircraft 551 16.7.1 Single Seat Variants 552 16.8 Aircraft Sizing Studies and Sensitivity Analyses 553 16.8.1 Civil Aircraft Sizing Studies 553 16.8.2 Military Aircraft Sizing Studies 554 16.9 Discussion 554 16.9.1 The AJT 557 References 558 17 Operating Costs 559 17.1 Overview 559 17.2 Introduction 560 17.3 Aircraft Cost and Operational Cost 561 17.3.1 Manufacturing Cost 563 17.3.2 Operating Cost 565 17.4 Aircraft Direct Operating Cost (DOC) 567 17.4.1 Formulation to Estimate DOC 569 17.4.2 Worked Example of DOC â Bizjet 571 17.5 Aircraft Performance Management (APM) 574 17.5.1 Methodology 576 17.5.2 Discussion â the Broader Issues 577 References 577 18 Miscellaneous Considerations 579 18.1 Overview 579 18.2 Introduction 579 18.3 History of the FAA 580 18.3.1 Code of Federal Regulations 582 18.3.2 The Role of Regulation 582 18.4 Flight Test 583 18.5 Contribution of the Ground Effect on Takeoff 585 18.6 Flying in Adverse Environments 586 18.6.1 Adverse Environment as Loss of Visibility 586 18.6.2 Adverse Environment Due to Aerodynamic and Stability/Control Degradation 587 18.7 Bird Strikes 590 18.8 Military Aircraft Flying Hazards and Survivability 591 18.9 Relevant Civil Aircraft Statistics 591 18.9.1 Maximum Takeoff Mass versus Operational Empty Mass 591 18.9.2 MTOM versus Fuel Load, M f 592 18.9.3 MTOM versus Wing Area, S W 593 18.9.4 MTOM versus Engine Power 594 18.9.5 Empennage Area versus Wing Area 595 18.9.6 Wing Loading versus Aircraft Span 597 18.10 Extended TwinâEngine Operation (ETOP) 597 18.11 Flight and Human Physiology 598 References 599 Appendices Appendix A Conversions 601 Appendix B International Standard Atmosphere Table 605 Appendix C Fundamental Equations 609 Appendix D Airbus 320 Class Case Study 615 Appendix E Problem Sets 627 Appendix F Aerofoil Data 647 Index 655
Les mer