Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.Learn the basics of soil mechanics and foundation engineering This hands-on guide shows, step by step, how soil mechanics principles can be applied to solve geotechnical and foundation engineering problems. Presented in a straightforward, engaging style by an experienced PE, Soil Mechanics and Foundation Engineering: Fundamentals and Applications starts with the basics, assuming no prior knowledge, and gradually proceeds to more advanced topics. You will get rich illustrations, worked-out examples, and real-world case studies that help you absorb the critical points in a short time.Coverage includes:Phase relationsSoil classificationCompactionEffective stressesPermeability and seepageVertical stresses under loaded areasConsolidationShear strengthLateral earth pressuresSite investigationShallow and deep foundationsEarth retaining structuresSlope stabilityReliability-based design
Les mer
PrefaceSymbols 1 Geotechnical Engineering  1.1 Introduction  1.2 Soils and Other Engineering Materials  1.3 Geotechnical Applications  1.4 Standards, Measurements, and Significant Digits  1.5 Physical and Numerical Modeling  1.6 Geotechnical Engineering Literature  1.7 Workplace Health and Safety and Risk Assessment  1.8 Factor of Safety  1.9 Professional Registration and Continuing Professional Development  References Part 1 Fundamentals  2 Phase Relations  2.1 Introduction  2.2 Phase Diagram and Definitions  2.3 Phase Diagram for Vs = 1  2.4 Laboratory Measurements  2.5 Main Points  Review Exercises  References 3 Soil Classification  3.1 Introduction  3.2 Origin of Soils  3.3 Grain Size Distribution  3.4 Atterberg Limits  3.5 Unified Soil Classification System  3.6 AASHTO Soil Classification System  3.7 Visual Classification and Description  3.8 Clay Mineralogy  3.9 Main Points  Review Exercises  References 4 Compaction  4.1 Introduction  4.2 Ground Improvement Techniques  4.3 Compaction Curve  4.4 Laboratory Compaction  4.5 Zero Air Void Curve  4.6 Field Compaction  4.7 Compaction Specifications and Control  4.8 California Bearing Ratio  4.9 Other Ground Improvement Techniques  4.10 Main Points  Review Exercises  References 5 Effective Stresses  5.1 Introduction  5.2 Vertical Overburden Stresses  5.3 Terzaghi’s Effective Stress Principle  5.4 Capillary Effects in Soils  5.5 Main Points  Review Exercises  References 6 Permeability and Seepage  6.1 Introduction  6.2 Bernoulli’s Equation  6.3 Darcy’s Law  6.4 Laboratory Determination of Hydraulic Conductivity  6.5 Field Determination of Hydraulic Conductivity  6.6 Stresses in Soils due to Flow  6.7 Equivalent Hydraulic Conductivity of Stratified Soils  6.8 Flow Nets  6.9 Design of Granular Filters  6.10 Seepage through an Embankment on an Impervious Base  6.11 Method of Fragments  6.12 Main Points  Review Exercises  References 7 Vertical Stresses under Loaded Areas  7.1 Introduction  7.2 Vertical Stress Increase due to a Point Load  7.3 Vertical Stress Increase due to a Line Load  7.4 Vertical Stress Increase due to a Strip Load  7.5 Vertical Stress Increase under the Corner of a Rectangular Load  7.6 2:1 Distribution for a Uniform Rectangular Load  7.7 Pressure Isobars under Square and Strip Flexible Uniform Loads  7.8 Vertical Stress Increase under an Embankment Load  7.9 Vertical Stress Increase beneath the Center of a Uniform Circular Load  7.10 Newmark’s Chart  7.11 Main Points  Review Exercises  References 8 Consolidation  8.1 Introduction  8.2 Fundamentals  8.3 One-Dimensional Consolidation  8.4 One-Dimensional Consolidation Test  8.5 Field Corrections to e vs. log σ′v Plot Developed in the Laboratory  8.6 Determination of Final Consolidation Settlement  8.7 Preloading  8.8 Time Rate of Consolidation  8.9 Secondary Compression  8.10 A Note on Preloading  8.11 Main Points  Review Exercises  References 9 Shear Strength  9.1 Introduction  9.2 Mohr’s Circles—A Review  9.3 Mohr-Coulomb Failure Criterion  9.4 A Simple Loading Scenario and Relevance of Mohr’s Circle  9.5 Mohr’s Circles and Failure Envelopes in Terms of Total and Effective Stresses  9.6 Drained and Undrained Loadings  9.7 Triaxial Test  9.8 Direct Shear Test  9.9 Peak, Residual, and Critical States  9.10 Skempton’s Pore Pressure Coefficients for Undrained Loading  9.11 Relationship between σ1 and σ3 at Failure  9.12 Stress Paths  9.13 Critical State Soil Mechanics  9.14 Main Points  Review Exercises  References 10 Lateral Earth Pressures  10.1 Introduction  10.2 At-Rest State and K0   10.3 Active and Passive States  10.4 Rankine’s Earth Pressure Theory  10.5 Coulomb’s Earth Pressure Theory  10.6 Lateral Earth Pressures Based on Elastic Analysis  10.7 Main Points  Review Exercises  References Part 2 Applications 11 Site Investigation  11.1 Introduction  11.2 Spacing and Depth of Investigation  11.3 Boring and Sampling  11.4 Laboratory versus In Situ Tests  11.5 In Situ Testing  11.6 Standard Penetration Test  11.7 Cone Penetration Test  11.8 Vane Shear Test  11.9 Other In Situ Tests  11.10 Bore Logs  11.11 Geotechnical Instrumentation  11.12 Geophysical Methods  11.13 Main Points  Review Exercises  References 12 Shallow Foundations  12.1 Introduction  12.2 General, Local, and Punching Shear Failure Modes  12.3 Terzaghi’s Bearing Capacity Theory  12.4 Gross and Net Pressures  12.5 The General Bearing Capacity Equation  12.6 Pressure Distributions beneath Eccentrically Loaded Foundations  12.7 Raft Foundations  12.8 Total and Differential Settlements  12.9 Settlement Computation Based on Elastic Analysis (Drained Soils)  12.10 Settlement Computations in Granular Soils  12.11 Settlement Computations in Cohesive Soils  12.12 Main Points  Review Exercises  References 13 Deep Foundations  13.1 Introduction  13.2 Pile Materials  13.3 Pile Installation  13.4 Shaft and Tip Loads  13.5 Pile Load Transfer Mechanism  13.6 Load-Carrying Capacity of a Single Pile  13.7 Pile Driving  13.8 Pile Load Test  13.9 Settlement of a Pile  13.10 Pile Groups  13.11 Foundations for Super-Tall Buildings  13.12 Rock-Socketed Piles  13.13 Main Points  Review Exercises  References 14 Earth Retaining Structures  14.1 Introduction  14.2 Retaining Walls  14.3 Cantilever Sheet Pile Walls  14.4 Anchored Sheet Piles  14.5 Braced Excavations  14.6 Retaining Walls Made of Piles  14.7 Main Points  Review Exercises  References 15 Slope Stability  15.1 Introduction  15.2 Factor of Safety   15.3 Stability of Homogeneous Undrained Clay Slopes  15.4 Taylor’s Stability Chart for Undrained Clays  15.5 Taylor’s Stability Chart for c′ − φ′ Soils  15.6 Cousins’ Stability Chart  15.7 Michalowski’s (2002) Stability Charts for Slopes Subjected to Pore Water Pressures  15.8 Method of Slices  15.9 Infinite Slopes  15.10 Main Points  Review Exercises  References 16 Reliability-Based Design  16.1 Introduction  16.2 Capacity-Demand Model   16.3 Allowable Stress Design  16.4 Load and Resistance Factor Design  16.5 A Probabilistic Approach  16.6 Determination of the Mean and Standard Deviation of Capacity and Demand  16.7 Main Points  Review Exercises  References A Unsaturated Soil Mechanics B Vesic’s (1973) Factors for Eq. (12.11) C Units and Conversions Index
Les mer

Produktdetaljer

ISBN
9781260468489
Publisert
2021-09-08
Utgiver
Vendor
McGraw-Hill Education
Vekt
1305 gr
Høyde
244 mm
Bredde
196 mm
Dybde
41 mm
Aldersnivå
U, 05
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
640