For those seeking a thorough grounding in modern communication engineering principles delivered with unrivaled clarity using an engineering-first approach Communication Engineering Principles, 2nd Edition provides readers with comprehensive background information and instruction in the rapidly expanding and growing field of communication engineering. This book is well-suited as a textbook in any of the following courses of study: TelecommunicationMobile CommunicationSatellite CommunicationOptical CommunicationElectronicsComputer Systems Primarily designed as a textbook for undergraduate programs, Communication Engineering Principles, 2nd Edition can also be highly valuable in a variety of MSc programs. Communication Engineering Principles grounds its readers in the core concepts and theory required for an in-depth understanding of the subject. It also covers many of the modern, practical techniques used in the field. Along with an overview of communication systems, the book covers topics like time and frequency domains analysis of signals and systems, transmission media, noise in communication systems, analogue and digital modulation, pulse shaping and detection, and many others.
Les mer
Preface xxi Acknowledgements xxiii About the Companion Website xxv 1 Overview of Communication Systems 1 1.1 Introduction 1 1.2 Nonelectrical Telecommunication 2 1.2.1 Verbal Nonelectrical Telecommunication 2 1.2.2 Visual Nonelectrical Telecommunication 3 1.2.2.1 Flags, Smoke, and Bonfires 3 1.2.2.2 Heliography 4 1.2.2.3 Semaphore 4 1.2.2.4 Demerits of Visual Nonelectrical Telecommunication 5 1.3 Modern Telecommunication 5 1.3.1 Developments in Character Codes 7 1.3.1.1 Morse Code 7 1.3.1.2 Baudot Code 7 1.3.1.3 Hollerith Code 8 1.3.1.4 EBCDIC Code 9 1.3.1.5 ASCII Code 9 1.3.1.6 ISO 8859 Code 10 1.3.1.7 Unicode 11 1.3.2 Developments in Services 13 1.3.2.1 Telegram 13 1.3.2.2 Telex 14 1.3.2.3 Facsimile 14 1.3.2.4 The Digital Era 15 1.3.3 Developments in Transmission Media 16 1.3.3.1 Copper Cable 17 1.3.3.2 Radio 18 1.3.3.3 Optical Fibre 19 1.4 Communication System Elements 21 1.4.1 Information Source 21 1.4.1.1 Audio Input Devices 22 1.4.1.2 Video Input Devices 23 1.4.1.3 Data Input Devices 23 1.4.1.4 Sensors 23 1.4.2 Information Sink 24 1.4.2.1 Audio Output Device 24 1.4.2.2 Visual Display Devices 26 1.4.2.3 Storage Devices 28 1.4.3 Transmitter 29 1.4.4 Receiver 31 1.5 Classification of Communication Systems 32 1.5.1 Simplex Versus Duplex Communication Systems 32 1.5.2 Analogue Versus Digital Communication Systems 33 1.5.3 Baseband Versus Modulated Communication Systems 35 1.5.3.1 Analogue Baseband Communication System 35 1.5.3.2 Discrete Baseband Communication System 36 1.5.3.3 Digital Baseband Communication System 41 1.5.3.4 Modulated Communication Systems 44 1.5.4 Circuit Versus Packet Switching 47 1.5.4.1 Circuit Switching 48 1.5.4.2 Packet Switching 50 1.6 Epilogue 53 References 53 Review Questions 53 2 Introduction to Signals and Systems 57 2.1 Introduction 57 2.2 What Is a Signal? 58 2.3 Forms of Telecommunication Signals 58 2.4 Subjective Classification of Telecommunication Signals 60 2.4.1 Speech 60 2.4.2 Music 62 2.4.3 Video 63 2.4.4 Digital Data 64 2.4.5 Facsimile 64 2.4.6 Ancillary and Control Signals 65 2.5 Objective Classification of Telecommunication Signals 65 2.5.1 Analogue or Digital 65 2.5.2 Periodic or Nonperiodic 67 2.5.3 Deterministic or Random 68 2.5.4 Power or Energy 69 2.5.5 Even or Odd 69 2.6 Special Waveforms and Signals 71 2.6.1 Unit Step Function 74 2.6.2 Signum Function 74 2.6.3 Rectangular Pulse 75 2.6.4 Ramp Pulse 76 2.6.5 Triangular Pulse 77 2.6.6 Sawtooth and Trapezoidal Pulses 77 2.6.7 Unit Impulse Function 78 2.6.8 Sinc Function 79 2.7 Sinusoidal Signals 81 2.7.1 Qualitative Introduction 82 2.7.2 Parameters of a Sinusoidal Signal 83 2.7.2.1 Angle 86 2.7.2.2 Amplitude 87 2.7.2.3 Angular Frequency 87 2.7.2.4 Frequency 87 2.7.2.5 Period 88 2.7.2.6 Wavelength 88 2.7.2.7 Initial Phase 88 2.7.2.8 Phase Difference 89 2.7.3 Addition of Sinusoids 92 2.7.3.1 Same Frequency and Phase 93 2.7.3.2 Same Frequency but Different Phases 93 2.7.3.3 Multiple Sinusoids of Different Frequencies 97 2.7.3.4 Beats Involving Two Sinusoids 97 2.7.4 Multiplication of Sinusoids 99 2.8 Logarithmic Units 99 2.8.1 Logarithmic Units for System Gain 101 2.8.2 Logarithmic Units for Voltage, Power, and Other Quantities 102 2.8.3 Logarithmic Unit Dos and Don’ts 104 2.9 Calibration of a Signal Transmission Path 107 2.10 Systems and Their Properties 109 2.10.1 Memory 109 2.10.2 Stability 111 2.10.3 Causality 112 2.10.4 Linearity 113 2.10.5 Time Invariance 116 2.10.6 Invertibility 118 2.11 Summary 121 Questions 122 3 Time Domain Analysis of Signals and Systems 127 3.1 Introduction 127 3.2 Basic Signal Operations 128 3.2.1 Time Shifting (Signal Delay and Advance) 128 3.2.2 Time Reversal 130 3.2.3 Time Scaling 132 3.3 Random Signals 134 3.3.1 Random Processes 134 3.3.2 Random Signal Parameters 135 3.3.3 Stationarity and Ergodicity 138 3.4 Standard Distribution Functions 139 3.4.1 Gaussian or Normal Distribution 139 3.4.2 Rayleigh Distribution 143 3.4.3 Lognormal Distribution 148 3.4.4 Rician Distribution 153 3.4.5 Exponential and Poisson Distributions 157 3.5 Signal Characterisation 162 3.5.1 Mean 162 3.5.2 Power 163 3.5.3 Energy 167 3.5.4 Root-mean-square Value 168 3.5.5 Autocorrelation 171 3.5.6 Covariance and Correlation Coefficient 176 3.6 Linear Time Invariant System Analysis 180 3.6.1 LTI System Response 181 3.6.2 Evaluation of Convolution Integral 186 3.6.3 Evaluation of Convolution Sum 190 3.6.4 Autocorrelation and Convolution 196 3.7 Summary 197 References 198 Questions 198 4 Frequency Domain Analysis of Signals and Systems 203 4.1 Introduction 203 4.2 Fourier Series 205 4.2.1 Sinusoidal Form of Fourier Series 206 4.2.1.1 Time Shifting 211 4.2.1.2 Time Reversal 212 4.2.1.3 Even and Odd Functions 212 4.2.1.4 Piecewise Linear Functions 214 4.2.2 Complex Exponential Form of Fourier Series 222 4.2.3 Amplitude and Phase Spectra 224 4.2.3.1 Double-sided Spectrum 227 4.2.3.2 Single-sided Spectrum 228 4.2.4 Fourier Series Application to Selected Waveforms 235 4.2.4.1 Flat-top-sampled Signal 235 4.2.4.2 Binary ASK Signal and Sinusoidal Pulse Train 243 4.2.4.3 Trapezoidal Pulse Train 248 4.3 Fourier Transform 253 4.3.1 Properties of the Fourier Transform 257 4.3.1.1 Even and Odd Functions 257 4.3.1.2 Linearity 258 4.3.1.3 Time Shifting 258 4.3.1.4 Frequency Shifting 258 4.3.1.5 Time Scaling 258 4.3.1.6 Time Reversal 259 4.3.1.7 Complex Conjugation 259 4.3.1.8 Duality 259 4.3.1.9 Differentiation 259 4.3.1.10 Integration 260 4.3.1.11 Multiplication 260 4.3.1.12 Convolution 260 4.3.1.13 Areas 260 4.3.1.14 Energy 261 4.3.2 Table of Fourier Transforms 263 4.3.3 Fourier Transform of Periodic Signals 268 4.4 Discrete Fourier Transform 270 4.4.1 Properties of the Discrete Fourier Transform 275 4.4.1.1 Periodicity 275 4.4.1.2 Symmetry 276 4.4.2 Fast Fourier Transform 277 4.4.3 Practical Issues in DFT Implementation 283 4.4.3.1 Aliasing 283 4.4.3.2 Frequency Resolution 284 4.4.3.3 Spectral Leakage 285 4.4.3.4 Spectral Smearing 285 4.4.3.5 Spectral Density and Its Variance 288 4.5 Laplace and z-transforms 291 4.5.1 Laplace Transform 291 4.5.2 z-transform 292 4.6 Inverse Relationship Between Time and Frequency Domains 295 4.7 Frequency Domain Characterisation of LTI Systems 297 4.7.1 Transfer Function 297 4.7.2 Output Spectral Density of LTI Systems 301 4.7.3 Signal and System Bandwidths 302 4.7.3.1 Subjective Bandwidth 303 4.7.3.2 Null Bandwidth 303 4.7.3.3 3 dB Bandwidth 304 4.7.3.4 Fractional Power Containment Bandwidth 306 4.7.3.5 Noise Equivalent Bandwidth 308 4.7.4 Distortionless Transmission 311 4.7.5 Attenuation and Delay Distortions 313 4.7.6 Nonlinear Distortions 314 4.8 Summary 316 References 317 Questions 317 5 Transmission Media 327 5.1 Introduction 327 5.2 Metallic Line Systems 328 5.2.1 Wire Pairs 328 5.2.2 Coaxial Cable 332 5.2.3 Attenuation in Metallic Lines 333 5.3 Transmission Line Theory 334 5.3.1 Incident and ReflectedWaves 337 5.3.2 Secondary Line Constants 338 5.3.3 Characteristic Impedance 340 5.3.4 Reflection and Transmission Coefficients 342 5.3.5 StandingWaves 345 5.3.6 Line Impedance and Admittance 347 5.3.7 Line Termination and Impedance Matching 353 5.3.8 Scattering Parameters 359 5.3.9 Smith Chart 363 5.4 Optical Fibre 365 5.4.1 Optical Fibre Types 367 5.4.1.1 Single-mode Step Index 368 5.4.1.2 Multimode Step Index Fibre 368 5.4.1.3 Multimode Graded Index 369 5.4.2 Coupling of Light into Fibre 369 5.4.3 Attenuation in Optical Fibre 371 5.4.3.1 Intrinsic Fibre Loss 371 5.4.3.2 Extrinsic Fibre Loss 375 5.4.4 Dispersion in Optical Fibre 376 5.4.4.1 Intermodal Dispersion 376 5.4.4.2 Intramodal Dispersion 377 5.5 Radio 380 5.5.1 Maxwell’s Equations 382 5.5.2 RadioWave Propagation Modes 384 5.5.2.1 GroundWave 386 5.5.2.2 SkyWave 386 5.5.2.3 Line-of-sight (LOS) 387 5.5.2.4 Satellite Communications 387 5.5.2.5 Mobile Communications 388 5.5.2.6 Ionospheric Scatter 388 5.5.2.7 Tropospheric Scatter 388 5.5.3 RadioWave Propagation Effects 388 5.5.3.1 Ionospheric Effects 388 5.5.3.2 Tropospheric Attenuation 390 5.5.3.3 Tropospheric Scintillation 393 5.5.3.4 Depolarisation 394 5.5.3.5 Tropospheric Refraction 395 5.5.4 Reflection and Refraction 397 5.5.5 Rough Surface Scattering 406 5.5.6 Diffraction 408 5.5.6.1 Diffraction Configuration and Terms 408 5.5.6.2 Fresnel Zones 410 5.5.6.3 Knife-edge Diffraction Loss 411 5.5.7 Path Loss 416 5.5.7.1 Free Space Path Loss 416 5.5.7.2 Plane Earth Propagation Path Loss 418 5.5.7.3 Terrestrial Cellular Radio Path Loss 421 5.5.8 Radio Frequency Allocation 424 5.6 Summary 424 References 425 Questions 426 6 Noise in Communication Systems 431 6.1 Introduction 431 6.2 Physical Sources of Random Noise 432 6.2.1 Thermal or Johnson Noise 432 6.2.2 Quantisation Noise 433 6.2.3 Radio or Sky Noise 433 6.2.4 Shot Noise 435 6.2.5 Partition Noise 435 6.2.6 Quantum Noise 435 6.2.7 Flicker or 1/f Noise 436 6.3 Additive White Gaussian Noise 437 6.3.1 Gaussian PDF of Noise 438 6.3.2 White Noise 439 6.3.3 Canonical and Envelope Representations of Noise 444 6.4 System Noise Calculations 448 6.4.1 Available Noise Power 448 6.4.2 Equivalent Noise Temperature 450 6.4.3 Noise Figure of a Single System 451 6.4.4 Noise Figure of Cascaded Systems 454 6.4.5 Overall System Noise Temperature 457 6.4.6 Signal-to-noise Ratio 459 6.5 Noise Effects in Communication Systems 462 6.5.1 SNR in Analogue Communication Systems 462 6.5.2 BER in Digital Communication Systems 465 6.6 Summary 469 References 470 Questions 470 7 Amplitude Modulation 473 7.1 Introduction 473 7.2 AM Signals: Time Domain Description 474 7.2.1 AMWaveform 474 7.2.2 Sketching AMWaveforms 475 7.2.3 Modulation Factor 476 7.3 Spectrum and Power of Amplitude Modulated Signals 480 7.3.1 Sinusoidal Modulating Signal 480 7.3.2 Arbitrary Message Signal 482 7.3.3 Power 485 7.4 AM Modulators 488 7.4.1 Generation of AM Signal 488 7.4.1.1 Linearly-varied-gain Modulator 488 7.4.1.2 Switching and Square-law Modulators 489 7.4.2 AM Transmitters 491 7.4.2.1 Low-level Transmitter 491 7.4.2.2 High-level Transmitter 492 7.5 AM Demodulators 492 7.5.1 Diode Demodulator 493 7.5.2 Coherent Demodulator 496 7.5.3 AM Receivers 498 7.5.3.1 Tuned Radio Frequency (RF) Receiver 498 7.5.3.2 Superheterodyne Receiver 499 7.6 Merits, Demerits, and Application of AM 501 7.7 Variants of AM 502 7.7.1 DSB 502 7.7.1.1 Waveform and Spectrum of DSB 502 7.7.1.2 DSB Modulator 504 7.7.1.3 DSB Demodulator 507 7.7.1.4 DSB Applications 509 7.7.2 SSB 510 7.7.2.1 Merits and Demerits of SSB 511 7.7.2.2 SSB Modulators 514 7.7.2.3 SSB Demodulator 516 7.7.2.4 Applications of SSB 517 7.7.3 ISB 518 7.7.3.1 ISB Modulator 518 7.7.3.2 ISB Demodulator 518 7.7.3.3 ISB Merits, Demerit, and Application 520 7.7.4 VSB 520 7.7.4.1 VSB Modulator 521 7.7.4.2 VSB Demodulator 522 7.8 Summary 524 Questions 525 8 Frequency and Phase Modulation 529 8.1 Introduction 529 8.2 Basic Concepts of FM and PM 530 8.2.1 Frequency Modulation Concepts 531 8.2.2 Phase Modulation Concepts 535 8.2.3 Relationship Between FM and PM 537 8.2.3.1 Frequency Variations in PM 537 8.2.3.2 Phase Variations in FM 540 8.3 FM and PMWaveforms 543 8.3.1 Sketching SimpleWaveforms 543 8.3.2 GeneralWaveform 544 8.4 Spectrum and Power of FM and PM 549 8.4.1 Narrowband FM and PM 549 8.4.1.1 Frequency Components 549 8.4.1.2 Comparing AM, NBFM, and NBPM 551 8.4.1.3 Amplitude Variations in NBFM and NBPM 556 8.4.2 Wideband FM and PM 557 8.4.2.1 Spectrum 558 8.4.2.2 Power 560 8.4.2.3 Bandwidth 563 8.4.2.4 FM or PM? 567 8.5 FM and PM Modulators 567 8.5.1 Narrowband Modulators 567 8.5.2 Indirect Wideband Modulators 569 8.5.3 Direct Wideband Modulators 572 8.5.3.1 LCO Modulator 573 8.5.3.2 VCO Modulator 575 8.6 FM and PM Demodulators 576 8.6.1 Direct Demodulator 577 8.6.1.1 Filter-based Demodulator 577 8.6.1.2 Digital Demodulator 577 8.6.2 Indirect Demodulator 577 8.6.2.1 PLL Demodulation Process 579 8.6.2.2 PLL States 580 8.6.2.3 PLL Features 580 8.6.3 Phase Demodulator 580 8.6.4 Frequency Discriminators 581 8.6.4.1 Differentiators 581 8.6.4.2 Tuned Circuits 583 8.7 FM Transmitter and Receiver 584 8.7.1 Transmitter 584 8.7.2 SNR and Bandwidth Trade-off 586 8.7.3 Pre-emphasis and De-emphasis 586 8.7.4 Receiver 588 8.8 Noise Effect in FM 588 8.9 Overview of FM and PM Features 594 8.9.1 Merits 594 8.9.2 Demerits 594 8.9.3 Applications 595 8.10 Summary 595 Questions 595 9 Sampling 599 9.1 Introduction 599 9.2 Sampling Theorem 599 9.3 Proof of Sampling Theorem 600 9.3.1 Lowpass Signals 602 9.3.2 Bandpass Signals 603 9.3.3 Sampling at Nyquist Rate 606 9.4 Aliasing 607 9.5 Anti-alias Filter 613 9.6 Non-instantaneous Sampling 615 9.6.1 Natural Sampling 616 9.6.2 Flat-top Sampling 618 9.6.3 Aperture Effect 622 9.7 Summary 623 Questions 624 Reference 625 10 Digital Baseband Coding 627 10.1 Introduction 627 10.2 Concept and Classes of Quantisation 628 10.3 Uniform Quantisation 634 10.3.1 Quantisation Noise 635 10.3.2 Dynamic Range of a Quantiser 636 10.3.3 Signal-to-quantisation-noise Ratio (SQNR) 636 10.3.4 Design Considerations 639 10.3.5 Demerits of Uniform Quantisation 640 10.4 Nonuniform Quantisation 641 10.4.1 Compressor Characteristic 642 10.4.2 A-law Companding 644 10.4.3 𝜇-law Companding 645 10.4.4 Companding Gain and Penalty 647 10.4.5 Practical Nonlinear PCM 650 10.4.6 SQNR of Practical Nonlinear PCM 657 10.5 Differential PCM (DPCM) 661 10.5.1 Adaptive Differential Pulse Code Modulation (ADPCM) 664 10.5.2 Delta Modulation 664 10.5.2.1 Quantisation Error 664 10.5.2.2 Prediction Filter 666 10.5.2.3 Design Parameters 666 10.5.2.4 Merits and Demerits of DM 666 10.5.2.5 Adaptive Delta Modulation (ADM) 668 10.5.2.6 Delta Sigma Modulation 668 10.6 Low Bit Rate Speech Coding 668 10.6.1 Waveform Coders 671 10.6.2 Vocoders 671 10.6.2.1 IMBE 672 10.6.2.2 LPC 672 10.6.2.3 MELP 673 10.6.3 Hybrid Coders 673 10.6.3.1 APC 673 10.6.3.2 MPE-LPC 673 10.6.3.3 CELP 673 10.7 Line Codes 674 10.7.1 NRZ Codes 674 10.7.2 RZ Codes 675 10.7.3 Biphase Codes 676 10.7.4 RLL Codes 676 10.7.5 Block Codes 677 10.8 Summary 680 Reference 681 Questions 681 11 Digital Modulated Transmission 683 11.1 Introduction 683 11.2 Orthogonality of Energy Signals 687 11.3 Signal Space 689 11.3.1 Interpretation of Signal-space Diagrams 690 11.3.2 Complex Notation for 2D Signal Space 693 11.3.3 Signal-spaceWorked Examples 694 11.4 Digital Transmission Model 699 11.5 Noise Effects 701 11.6 Symbol and Bit Error Ratios 703 11.6.1 Special Cases 705 11.6.2 Arbitrary Binary Transmission 708 11.7 Binary Modulation 712 11.7.1 ASK 712 11.7.2 PSK 714 11.7.3 FSK 715 11.7.3.1 Generation 715 11.7.3.2 Spectrum 716 11.7.3.3 Frequency Spacing and MSK 716 11.7.4 Minimum Transmission Bandwidth 718 11.8 Coherent Binary Detection 719 11.8.1 ASK Detector 719 11.8.2 PSK Detector 721 11.8.3 FSK Detector 721 11.9 Noncoherent Binary Detection 723 11.9.1 Noncoherent ASK Detector 725 11.9.2 Noncoherent FSK Detector 727 11.9.3 DPSK 727 11.10 M-ary Transmission 730 11.10.1 Bandwidth Efficiency 730 11.10.2 M-ary ASK 732 11.10.2.1 M-ary ASK Modulator 732 11.10.2.2 M-ary ASK Detector 734 11.10.2.3 BER of M-ary ASK 734 11.10.3 M-ary PSK 737 11.10.3.1 QPSK Modulator and Detector 738 11.10.3.2 M-ary PSK Modulator and Detector 740 11.10.3.3 BER of M-ary PSK 743 11.10.4 M-ary FSK 746 11.10.4.1 M-ary FSK Modulator and Detector 746 11.10.4.2 BER of M-ary FSK 746 11.10.4.3 Noise-bandwidth Trade-off in M-ary FSK 748 11.10.5 M-ary APSK 749 11.10.5.1 16-APSK 749 11.10.5.2 BER of Square M-ary APSK 752 11.11 Design Parameters 754 11.12 Summary 757 Reference 758 Questions 759 12 Pulse Shaping and Detection 763 12.1 Introduction 763 12.2 Anti-ISI Filtering 765 12.2.1 Nyquist Filtering 767 12.2.2 Raised Cosine Filtering 769 12.2.3 Square Root Raised Cosine Filtering 771 12.2.4 Duobinary Signalling 774 12.2.4.1 Cosine Filter 774 12.2.4.2 Signal Power Trade-off 777 12.2.4.3 Sine Filter 778 12.2.4.4 Polybinary Signalling 779 12.3 Information Capacity Law 780 12.4 The Digital Receiver 787 12.4.1 Adaptive Equalisation 787 12.4.2 Matched Filter 787 12.4.2.1 Specification of a Matched Filter 788 12.4.2.2 Matched Filter by Correlation 790 12.4.2.3 Matched FilterWorked Examples 791 12.4.3 Clock Extraction 797 12.4.4 Eye Diagrams 799 12.5 Summary 799 References 801 Questions 801 13 Multiplexing Strategies 805 13.1 Introduction 805 13.2 Frequency Division Multiplexing 809 13.2.1 General Concepts 809 13.2.2 Demerits of Flat-level FDM 812 13.2.3 Future of FDM Technology 813 13.2.4 FDM Hierarchies 814 13.2.4.1 UK System 816 13.2.4.2 European System 820 13.2.4.3 Bell System 821 13.2.4.4 Nonvoice Signals 822 13.2.5 Wavelength Division Multiplexing 823 13.3 Time Division Multiplexing 825 13.3.1 General Concepts 825 13.3.2 Plesiochronous Digital Hierarchy 827 13.3.2.1 E1 System 827 13.3.2.2 T1 and J1 Systems 832 13.3.2.3 PDH Problems 838 13.3.3 Synchronous Digital Hierarchy 838 13.3.3.1 SDH Rates 839 13.3.3.2 SDH Frame Structure 839 13.3.3.3 SONET 844 13.3.4 ATM 846 13.3.4.1 ATM Layered Architecture 847 13.3.4.2 ATM Network Components 850 13.3.4.3 ATM Cell Header 851 13.3.4.4 ATM Features Summary 852 13.3.4.5 ATM Versus IP 852 13.4 Code Division Multiplexing 853 13.4.1 Types of Spread Spectrum Modulation 853 13.4.2 CDM Transmitter 856 13.4.3 CDM Receiver 858 13.4.4 Crucial Features of CDM 863 13.4.4.1 Synchronisation 863 13.4.4.2 Cross-correlation of PN Codes 864 13.4.4.3 Power Control 864 13.4.4.4 Processing Gain 866 13.5 Multiple Access 867 13.5.1 FDMA 868 13.5.2 TDMA 869 13.5.3 CDMA 871 13.5.4 Hybrid Schemes 872 13.6 Summary 873 Questions 874 Appendix A Character Codes 877 Appendix B Trigonometric Identities 883 Appendix C Tables and Constants 885 C.1 Constants 885 C.2 SI Units 886 C.3 Complementary Error Function erfc(x) and Q function Q(x) 887 Index 891
Les mer
For those seeking a thorough grounding in modern communication engineering principles delivered with unrivaled clarity using an engineering-first approach Communication Engineering Principles: 2nd Edition provides readers with comprehensive background information and instruction in the rapidly expanding and growing field of communication engineering. This book is well-suited as a textbook in any of the following courses of study: TelecommunicationMobile CommunicationSatellite CommunicationOptical CommunicationElectronicsComputer Systems Primarily designed as a textbook for undergraduate programs, Communication Engineering Principles: 2nd Edition can also be highly valuable in a variety of MSc programs. Communication Engineering Principles grounds its readers in the core concepts and theory required for an in-depth understanding of the subject. It also covers many of the modern, practical techniques used in the field. Along with an overview of communication systems, the book covers topics like time and frequency domains analysis of signals and systems, transmission media, noise in communication systems, analogue and digital modulation, pulse shaping and detection, and many others.
Les mer

Produktdetaljer

ISBN
9781119274025
Publisert
2021-02-11
Utgave
2. utgave
Utgiver
Vendor
John Wiley & Sons Inc
Vekt
2155 gr
Høyde
244 mm
Bredde
170 mm
Dybde
54 mm
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
944

Forfatter

Om bidragsyterne

IFIOK OTUNG, holds a PhD in Satellite Communications from the University of Surrey, UK and First-Class Honours and Master's degrees in Electrical and Electronic Engineering from the University of Ife, Nigeria. He is a Chartered Engineer and award-winning academic who has made significant contributions to engineering education and research around the world over many years, especially in the UK, Europe, US, Canada, India, China, Japan and Africa. His professional memberships include the IET (Institution of Engineering and Technology) and AIAA (American Institute of Aeronautics and Astronautics). For more information on Professor Otung's professional affiliations and work, see https://professorifiokotung.com/.