Nanotechnology has been incorporated into a wide range of garments to improve the durability of clothing / apparel and create new properties for a special end-used application. It also incorporates wearable electronics into clothing to make it smarter. Smart nano-textiles refers to the uses and integration of smart nanocoatings, nanosensors and nanodevices in multifunctional textiles, since they are both low cost and have low power consumption. Various organic and inorganic nanomaterials can be used in garments to improve their properties and create new properties such as anti-bacterial, superhydrophobic, auto-cleaning, self-cleaning, stain repellent, wrinkle-free, static eliminating, fire resistant and electrically conductive properties. This book focuses on the fundamental concepts and approaches for the preparation of smart nanotextiles, their properties, and their applications in multifarious industries, including smart garments, biomedicine, construction/building materials, energy conversion/storage, automotive/aerospace industries and agriculture.
Les mer
PART 1: FUNDAMENTALS 1. Smart nano-textiles: An introduction 2. Advanced characterization techniques for textiles 3. Methods for design and fabrication of nanosensors used in textiles 4. Methods for design and fabrication of nanodevices used in textiles 5. Nanosensors for passive smart textiles 6. Nanosensors and nanodevices for active smart textiles 7. Mathematical modeling and simulation of smart textiles PART 2: APPLICATIONS 8. Water and oil repellent textiles 9. Nanobased antibacterial textiles 10. Smart electronic yarns and wearable fabrics for human biomonitoring 11. Organic electronics on natural cotton fibres 12. Electroconductive cotton textiles using graphene 13. Carbon coated textiles for flexible energy storage 14. Nanopatterned textile-based wearable triboelectric nanogenerator 15. Highly sensitive biosensors from textiles 16. Soft capacitor fibers using conductive polymers for electronic textiles 17. Flexible fiber batteries 18. Design transforming dress based on pneumatic systems 19. Structures of novel antimicrobial agents for textiles 20. Color-changing and color-tunable photonic bandgap fiber textiles 21. Smart and electronic textiles 22. Smart textiles in healthcare 23. Light emitting textiles for photodynamic therapy textiles 24. Textile nano-antennas 25. Flexible photovoltaic cells embedded into textile structures 26. Textiles for flexible solar cells and 3D printable materials PART 3: ENVIRONMENTAL IMPACTS AND FUTURE SCOPES 27. Environmental impacts 28. Future scopes and current applications of smart-nanotextiles
Les mer
Shows how nanosensors and nanodevices are being used to create new classes of smart nanotextiles
Shows how nanotechnology is being used to be able to enhance textiles with smart properties, including anti-bacterial, superhydrophobic and auto-cleaning Explores which nanomaterial types are most compatible with particular textile classes Assesses the major challenges of integrating nanosensors and nanodevices into textiles
Les mer

Produktdetaljer

ISBN
9780128207772
Publisert
2020-09-18
Utgiver
Vendor
Elsevier Science Publishing Co Inc
Vekt
770 gr
Høyde
235 mm
Bredde
191 mm
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
390

Om bidragsyterne

Andrea Ehrmann is Professor of Measurement Technology, Physics and Textile Technologies at Bielefeld University of Applied Sciences, Germany. Her research focuses on the 3D printing of textile materials. Dr. Phuong Nguyen-Tri is a Professor in the Département de Chimie, Biochimie et Physique at the Université du Québec à Trois-Rivières in Trois-Rivières, Quebec, Canada. He is the founder of the Laboratory of Advanced Materials for Energy and Environment at the Université du Québec à Trois-Rivières. He holds an M.Sc. degree from École Nationale Supérieure de Chimie de Mulhouse, France and a Ph.D. degree in Material Sciences from the Conservatoire National des Arts et Métiers in Paris, France in 2009. He worked for two years (2009-2011) as a non-tenure track Assistant Professor in the Department of Industrial Polymers (now Laboratoire Procédés et Ingénierie en Mécanique et Matériaux, Paris) at the Conservatoire National des Arts et Métiers in Paris. During 2011-2015, he worked in the Department of Mechanical Engineering at the École de Technologie Supérieure ÉTS, Montréal, Canada as a researcher for the Research Chair in Protective Materials and Equipment for Occupational Health and Safety. From 2015 to 2019, Dr. Nguyen-Tri worked as a Research Officer in the Department of Chemistry at the Université de Montréal, Canada before accepting a professorship position at the Université du Québec à Trois-Rivières. His main research interests are in nanomaterials, hybrid nanoparticles, smart coatings, polymer crystallization, polymer blends and composites. Dr. Nguyen-Tri has edited 11 books (including 8 books by Elsevier). He has served as an Editor of many special issues in the ISI indexed journals. Dr. Nguyen-Tri is an Editorial Board Member for journals including RSEM, PLoS One (PNAS) and SN Applied Science (Springer). Tuan Anh Nguyen is Senior Principal Research Scientist at the Institute for Tropical Technology, Vietnam Academy of Science and Technology, Vietnam. He received B.S. in Physics from Hanoi University in 1992, and Ph.D. in Chemistry from the Paris Diderot University (France) in 2003. He was Visiting Scientist at Seoul National University (South Korea, 2004) and University of Wollongong (Australia, 2005). He then worked as Postdoctoral Research Associate and Research Scientist in the Montana State University (USA), 2006-2009. In 2012, he was appointed as the Head of the Microanalysis Department at Institute for Tropical Technology. His research activities include smart sensors, smart networks, smart hospitals, smart cities and digital twins. He edited over 70 Elsevier, 12 CRC Press, 1 Springer, 1 RSC and 2 IGI Global books. He is Editor-In-Chief of "Kenkyu Journal of Nanotechnology & Nanoscience".