The application of sophisticated evolutionary computing approaches for solving complex problems with multiple conflicting objectives in science and engineering have increased steadily in the recent years. Within this growing trend, Memetic algorithms are, perhaps, one of the most successful stories, having demonstrated better efficacy in dealing with multi-objective problems as compared to its conventional counterparts. Nonetheless, researchers are only beginning to realize the vast potential of multi-objective Memetic algorithm and there remain many open topics in its design.
This book presents a very first comprehensive collection of works, written by leading researchers in the field, and reflects the current state-of-the-art in the theory and practice of multi-objective Memetic algorithms. "Multi-Objective Memetic algorithms" is organized for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of Memetic algorithms and multi-objective optimization.
Les mer
Memetic algorithms are a success story in sophisticated evolutionary computing. Written for as wide a readership as possible, this book reflects the current state-of-the-art in the theory and practice of Memetic algorithms and is an invaluable reference.
Les mer
Evolutionary Multi-Multi-Objective Optimization - EMMOO.- Implementation of Multiobjective Memetic Algorithms for Combinatorial Optimization Problems: A Knapsack Problem Case Study.- Knowledge Infused in Design of Problem-Specific Operators.- Solving Time-Tabling Problems Using Evolutionary Algorithms and Heuristics Search.- An Efficient Genetic Algorithm with Uniform Crossover for the Multi-Objective Airport Gate Assignment Problem.- Application of Evolutionary Algorithms for Solving Multi-Objective Simulation Optimization Problems.- Feature Selection Using Single/Multi-Objective Memetic Frameworks.- Multi-Objective Robust Optimization Assisted by Response Surface Approximation and Visual Data-Mining.- Multiobjective Metamodel–Assisted Memetic Algorithms.- A Convergence Acceleration Technique for Multiobjective Optimisation.- Knowledge Propagation through Cultural Evolution.- Risk and Cost Tradeoff in Economic Dispatch Including Wind Power Penetration Based on Multi-Objective Memetic Particle Swarm Optimization.- Hybrid Behavioral-Based Multiobjective Space Trajectory Optimization.- Nature-Inspired Particle Mechanics Algorithm for Multi-Objective Optimization.- Information Exploited for Local Improvement.- Combination of Genetic Algorithms and Evolution Strategies with Self-adaptive Switching.- Comparison between MOEA/D and NSGA-II on the Multi-Objective Travelling Salesman Problem.- Integrating Cross-Dominance Adaptation in Multi-Objective Memetic Algorithms.- A Memetic Algorithm for Dynamic Multiobjective Optimization.- A Memetic Coevolutionary Multi-Objective Differential Evolution Algorithm.- Multiobjective Memetic Algorithm and Its Application in Robust Airfoil Shape Optimization.
Les mer
The application of sophisticated evolutionary computing approaches for solving complex problems with multiple conflicting objectives in science and engineering have increased steadily in the recent years. Within this growing trend, Memetic algorithms are, perhaps, one of the most successful stories, having demonstrated better efficacy in dealing with multi-objective problems as compared to its conventional counterparts. Nonetheless, researchers are only beginning to realize the vast potential of multi-objective Memetic algorithm and there remain many open topics in its design.
This book presents a very first comprehensive collection of works, written by leading researchers in the field, and reflects the current state-of-the-art in the theory and practice of multi-objective Memetic algorithms. "Multi-Objective Memetic algorithms" is organized for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of Memetic algorithms and multi-objective optimization.
Les mer
Recent research on Multi-objective Memetic Algorithms Includes supplementary material: sn.pub/extras
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Produktdetaljer
ISBN
9783540880509
Publisert
2009-02-26
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet