Low Carbon Stabilization and Solidification of Hazardous Wastes details sustainable and low-carbon treatments for addressing environmental pollution problems, critically reviewing low-carbon stabilization/solidification technologies. This book presents the latest state-of-the-art knowledge of low-carbon stabilization/solidification technologies to provide cost-effective sustainable solutions for real-life environmental problems related to hazardous wastes including contaminated sediments. As stabilization/solidification is one of the most widely used waste remediation methods for its versatility, fast implementation and final treatment of hazardous waste treatment, it is imperative that those working in this field follow the most recent developments. Low Carbon Stabilization and Solidification of Hazardous Wastes is a necessary read for academics, postgraduates, researchers and engineers in the field of environmental science and engineering, waste management, and soil science, who need to keep up to date with the most recent advances in low-carbon technologies. This audience will develop a better understanding of these low-carbon mechanisms and advanced characterization technologies, fostering the future development of low-carbon technologies and the actualization of green and sustainable remediation.
Les mer
Part I Overview of environmental remediation and stabilization/solidification 1. Sustainable waste management 2. Overview of low-carbon stabilization/solidification Part II Low-carbon stabilization/solidification (S/S) of contaminated soil and sediment 3. Green cementitious materials for S/S 4. Natural or organophilic clay for S/S 5. Nanomaterials for S/S 6. Biochar for S/S 7. S/S of contaminated river/lake sediment 8. S/S of contaminated marine sediment Part III Low-carbon stabilization/solidification of industrial waste 9. S/S of waste incineration fly ash and bottom ash 10. S/S of waste incineration bottom ash 11. S/S of industrial sludge (electroplating) 12. S/S of industrial sludge (mining) 13. S/S of sewage sludge ash 14. Remediation of mine waste 15. Remediation of tailing waste 16. Remediation of chemical waste 17. Utilization of waste slag 18. Utilization of coal fly ash and bottom ash 19. Utilization of contaminated bio-waste Part IV Low-carbon stabilization/solidification of radioactive waste 20. Cement-based S/S of radioactive waste 21. Glass-based S/S of radioactive waste 22. Ceramic-based S/S of radioactive waste 23. Chemical enhanced S/S of radioactive waste Part V Future prospects 24. Novel materials for S/S technologies 25. Advanced characterization for S/S technologies 26. New lab-scale analytical methods for S/S technologies 27. Life cycle analysis of S/S technologies 28. Cost-benefit analysis of S/S technologies 29. Sustainable waste management and circular economy 30. Future research directions for sustainable remediation
Les mer
Introduces state-of-the-art low-carbon stabilization/solidification technologies for contaminated soils and sediments, hazardous waste, and radioactive waste
Focuses on stabilization/solidification for environmental remediation, as one of the most widely used environmental remediation technologies in field-scale applications Details the most advanced and up-to-date low-carbon sustainable technologies necessary to guide future research and sustainable development Provides comprehensive coverage of low-carbon solutions for treating a variety of hazardous wastes as well as contaminated soil and sediment
Les mer

Produktdetaljer

ISBN
9780128240045
Publisert
2021-09-21
Utgiver
Vendor
Elsevier Science Publishing Co Inc
Vekt
1630 gr
Høyde
276 mm
Bredde
216 mm
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
590

Redaktør

Om bidragsyterne

Prof. Tsang is a leading scientist in waste-to-resource technology, hazardous waste treatment, and carbon capture and utilization. Over the years, he has published more than 500 peer-reviewed papers in the top 10% of journals and has been invited to deliver keynote speeches or to chair seminars at international conferences. He was also awarded as a 2021 Highly Cited Researcher (Clarivate Analytics) for both Engineering and Environment and Ecology, with his professional contributions being recognized by local and international communities. He serves as Associate Editor for Science of the Total Environment, Critical Reviews in Environmental Science & Technology, Journal of Environmental Management, Journal of Hazardous Materials. Lei Wang is a professor at Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment. His primary research areas are regional ecological environment assessment and organic industry development. He has currently published over 30 articles in journals including Natrue Geoscience, Geoderma, Agriculture, Ecosystems & Environment, and others. Additionally, he currently holds the position of Deputy Director of the Soil Ecology Committee of the Chinese Soil Science Society, and he is also a member of the Carbon Peak and Carbon Neutrality Committee of the Chinese Society for Environmental Sciences.