This book provides insights into the wetting behavior on fiber-dressed surfaces and guidelines for developing superhydrophobicity based on electrospinning. In developing superhydrophobicity, electrospinning possesses the following advantages over other fabrication techniques. First, the electrospun micro- and nanofibers, which may also featured with secondary fiber morphology, provide sufficient surface roughness for superhydrophobicity. Second, electrospinning is considered an additive manufacturing technique, so the surfaces to be modified are not destroyed for superhydrophobicity. Third, the introduced electrospun structure is featured with high porosity with inter-fiber pores, allowing for a high vapor transmission rate, which is necessary in many applications such as wound dressing, gas sensor.However, books focused on developing superhydrophobicity using electrospinning are rarely found. Electrospinning is only introduced as one section in most superhydrophobicity-related books, and the mechanism of superhydrophobicity by different electrospinning-based methods lacks detailed explanation.
Les mer
This book provides insights into the wetting behavior on fiber-dressed surfaces and guidelines for developing superhydrophobicity based on electrospinning.
Introduction.- Fundamentals of wetting and electrospinning.- Wetting control by electrospinning.- Development of lotus superhydrophobicity by electrospinning.- Development of rose-petal superhydrophobicity by electrospinning.
Les mer
This book provides insights into the wetting behavior on fiber-dressed surfaces and guidelines for developing superhydrophobicity based on electrospinning. In developing superhydrophobicity, electrospinning possesses the following advantages over other fabrication techniques. First, the electrospun micro- and nanofibers, which may also featured with secondary fiber morphology, provide sufficient surface roughness for superhydrophobicity. Second, electrospinning is considered an additive manufacturing technique, so the surfaces to be modified are not destroyed for superhydrophobicity. Third, the introduced electrospun structure is featured with high porosity with inter-fiber pores, allowing for a high vapor transmission rate, which is necessary in many applications such as wound dressing, gas sensor.However, books focused on developing superhydrophobicity using electrospinning are rarely found. Electrospinning is only introduced as one section in most superhydrophobicity-related books, and the mechanism of superhydrophobicity by different electrospinning-based methods lacks detailed explanation.
Les mer
Explains the mechanism of electrospinning-based methods for wetting control Includes in-depth discussions of the wetting behavior on fiber-dressed surfaces Provides a comprehensive review on developing superhydrophobicity by electrospinning
Les mer
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Produktdetaljer
ISBN
9783031555510
Publisert
2024-04-01
Utgiver
Vendor
Springer International Publishing AG
Høyde
240 mm
Bredde
168 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Forfatter
Om bidragsyterne
Yi Zhang received his BSc and MSc degrees from Shandong University, China, and Chinese Academy of Sciences, China, respectively. Prior to studying in University of Waterloo, he studied as Research Assistant in Rensselaer Polytechnic Institute, USA for two years. Yi's research interests are on the thermophysics in interfacial engineering including wetting and thermal transport, and energy systems including energy storage and renewable energy. He has published peer-reviewed 14 papers in scientific journals such as Applied Energy, Journal of Applied Physics, Colloids and Surfaces A, with 1 china and 1 US patents, and made 2 oral presentations at international conferences in his fields of research.