Sodium-Ion Batteries An essential resource with coverage of up-to-date research on sodium-ion battery technology Lithium-ion batteries form the heart of many of the stored energy devices used by people all across the world. However, global lithium reserves are dwindling, and a new technology is needed to ensure a shortfall in supply does not result in disruptions to our ability to manufacture reliable, efficient batteries. In Sodium-Ion Batteries: Energy Storage Materials and Technologies, eminent researcher and materials scientist Yan Yu delivers a comprehensive overview of the state-of-the-art in sodium-ion batteries (SIBs), including their design principles, cathode and anode materials, electrolytes, and binders. The author discusses high-performance rechargeable sodium-ion battery technology in the contexts of energy, power density, and electrochemical stability for commercialization. Exploring a wide range of literature on the recent progress made by researchers on sodium-ion battery technology, the book provides valuable perspectives on designing better materials for SIBs to unlock their practical capabilities. A thorough introduction to sodium-ion batteries, including their key materials and likely future developmentsComprehensive explorations of design principles of electrode materials and electrolytes for sodium-ion batteriesPractical discussions of cathode materials for sodium-ion batteries, including transition metal oxides, polyanionic compounds, Prussian blue analogues and organic compoundsIn-depth examinations of anode materials for sodium-ion batteries, including carbon-based materials, metal chalcogenides, metal alloys, phosphorus and Na metal anodes Perfect for materials scientists, inorganic chemists, electrochemists, and physical chemists, Sodium-Ion Batteries: Energy Storage Materials and Technologies will also earn a place in the libraries of catalytic and polymer chemists.
Les mer
Foreword xiii Preface xv 1 Introduction to Sodium-Ion Batteries 1 1.1 Brief Outline 1 1.2 Key Materials 4 1.3 Toward Future Development 13 References 14 2 Design Principles for Sodium-Ion Batteries 17 2.1 Introduction 17 2.2 Basic Design Principles 18 2.2.1 Energy Density 18 2.2.2 Power Density 20 2.2.3 Cycling Life 20 2.2.4 Safety 21 2.2.5 Cost 21 2.3 Design Principles for Electrode Materials 22 2.3.1 Transport Properties 22 2.3.2 Size Effects 26 2.3.3 Morphology and Structure 28 2.4 Design Principles for Electrolytes 33 2.4.1 Transport Properties 33 2.4.2 Electrochemical Stability Window 35 2.4.3 Thermal Stability 36 2.4.4 Interfacial Compatibility 37 2.4.5 Safety Issues 37 2.5 Conclusions 38 References 38 3 Transition Metal Oxide Cathodes for Sodium-Ion Batteries 41 3.1 Introduction 41 3.2 Sodium-free Transition Metal Oxides 43 3.2.1 Vanadium Oxides 43 3.2.2 Manganese Dioxides 47 3.3 Sodium-inserted Layered Metal Oxides 48 3.3.1 NaFeO2 51 3.3.2 NaxCoO2 54 3.3.3 NaxMnO2 55 3.3.4 NaxNiO2 61 3.3.5 NaxVO2 65 3.3.6 NaxCrO2 66 3.3.7 Mixed Cation Oxides 69 3.3.8 Other Emerging Metal Oxides 70 3.4 Concluding Remarks 72 References 73 4 Polyanion-Type Cathodes for Sodium-Ion Batteries 79 4.1 Introduction 79 4.2 Phosphates 80 4.2.1 NaMPO4 (M = Fe and Mn) 80 4.2.2 NASICON-Type Phosphates 83 4.2.2.1 NASIClON-type Na3V2(PO4)3 83 4.2.2.2 NASICON-type Na3MnTi(PO4)3 89 4.3 Pyrophosphates 90 4.3.1 NaMP2O7 (M = Fe, V, and Ti) 91 4.3.2 Na2MP2O7 (M = Co, Fe, Mn, Cu, and Zn) 93 4.3.3 Na4M3(PO4)2P2O7 (M = Fe, Co, Mn, Ni, and Mg) 98 4.3.4 Other Pyrophosphates 102 4.4 Fluorinated Phosphate Cathodes 105 4.4.1 NaVPO4F 105 4.4.2 Na2MPO4F (M = Fe, Mn, and Ni) 107 4.4.3 Na3(VO1−xPO4)2F1+2x (0≤ x ≤1) 110 4.5 Sulfates 116 4.5.1 NaxFey(SO4)z 116 4.5.2 Fluorosulfates 119 4.6 Silicates 119 4.7 Other Polyanion-Type Compounds 121 4.8 Concluding Remarks 125 References 126 5 Prussian Blue Analogue Cathodes for Sodium-Ion Batteries 137 5.1 Introduction 137 5.2 Crystal Structure 138 5.3 Electrochemistry Mechanisms 142 5.4 Preparation Approaches 144 5.4.1 Coprecipitation 145 5.4.2 Self-decomposition of Precursors 147 5.5 Optimizing Electrochemical Performance 148 5.5.1 Effect of Lattice Architecture on Electrochemistry 149 5.5.1.1 Substitution of Cation 149 5.5.1.2 Inserting Cation 150 5.5.1.3 Vacancy 151 5.5.1.4 Water Molecules 151 5.5.2 Effect of Morphological Optimizations on Electrochemistry 152 5.5.3 NaxMFe-PBAs with Two Na+ Insertion Sites 154 5.5.4 NaxMFe-PBAs with One Na+ Insertion Sites 155 5.6 Concluding Remarks 156 References 157 6 Organic Cathodes for Sodium-Ion Batteries 161 6.1 Introduction 161 6.2 C=O Reaction 163 6.2.1 Quinones 164 6.2.2 Carboxylates 173 6.2.3 Anhydrides 175 6.2.4 Amides 177 6.3 Doping Reaction 181 6.3.1 Conductive Polymers 182 6.3.2 Organic Radical Compounds 188 6.3.3 Microporous Polymers 192 6.4 C=N Reaction 194 6.4.1 Schiff Base Organic Compounds 194 6.4.2 Pteridine Derivatives 196 6.5 Concluding Remarks 197 References 198 7 Intercalation-Type Anode Materials for Sodium-Ion Batteries 203 7.1 Introduction 203 7.2 Carbon-Based Anode Materials 203 7.2.1 Graphite Anode 204 7.2.2 Hard Carbon Anode 205 7.2.3 Soft Carbon Anode 210 7.3 Titanium-Based Anode Materials 211 7.3.1 TiO2 212 7.3.1.1 Amorphous TiO2 212 7.3.1.2 Anatase TiO2 213 7.3.1.3 TiO2-B 214 7.3.1.4 Rutile TiO2 216 7.3.2 Li4Ti5O12 218 7.3.3 Na2Ti3O7 221 7.3.3.1 Surface Modifications 224 7.3.3.2 Micro-Nano Structure Design 224 7.3.3.3 Self-Supported Electrode Design 225 7.3.3.4 Anion Doping 228 7.3.3.5 Cation Doping 230 7.3.4 NaTi2(PO4)3 231 7.3.4.1 Structure and Properties of NaTi2(PO4)3 231 7.3.4.2 Modification Strategies of NaTi2(PO4)3 232 7.3.5 TiNb2O7 237 7.3.5.1 Structure and Properties of TiNb2O7 237 7.3.5.2 Modification Strategies of TiNb2O7 237 7.4 Concluding Remarks 239 References 239 8 Phosphorus/Phosphide Anodes for Sodium–Ion Batteries on Alloy and Conversion Reactions 245 8.1 Introduction 245 8.2 Phosphorus Anodes 246 8.2.1 Phosphorus Allotropes 246 8.2.2 Na-Storage Mechanism for Phosphorus-Based Materials 249 8.2.2.1 Na-Storage Mechanism for Red Phosphorus 249 8.2.2.2 Na-Storage Mechanism for Black Phosphorus 250 8.2.3 Phosphorus-Based Materials for Na–Ion Batteries 253 8.2.3.1 Red Phosphorus for Na–Ion Batteries 253 8.2.3.2 Black Phosphorus and Phosphorene for Na-Ion Batteries 258 8.3 Metal Phosphide Anodes 261 8.3.1 Na-Storage Mechanism for Metal Phosphides 261 8.3.2 Metal Phosphides for Na-Ion Batteries 262 8.3.2.1 Tin Phosphide Materials 262 8.3.2.2 Cobalt Phosphide Materials 265 8.3.2.3 Iron Phosphide Materials 266 8.3.2.4 Nickel Phosphide Materials 267 8.3.2.5 Copper Phosphide Materials 268 8.4 Concluding Remarks 269 References 270 9 Metal Oxides/Chalcogenides/Alloys for Sodium-Ion Batteries on Alloy and Conversion Reactions 273 9.1 Introduction 273 9.2 Metal Oxides 273 9.2.1 Conversion-type Oxides 273 9.2.2 Conversion-alloy-type Oxides 277 9.3 Metal Chalcogenides 278 9.3.1 Metal Sulfides 278 9.3.1.1 SnS/SnS2 279 9.3.1.2 Sb2S3/Bi2S3 281 9.3.1.3 MoS2/WS2 282 9.3.1.4 FeSx/CoSx/NiSx 283 9.3.1.5 Other Monometal Sulfides Including CuSx/VSx/TiS2 286 9.3.1.6 Bimetallic Sulfides 288 9.3.2 Metal Selenides 290 9.3.2.1 SnSe/SnSe2 291 9.3.2.2 Sb2Se3/Bi2Se3 291 9.3.2.3 MoSe2/WSe2 292 9.3.2.4 FeSex/CoSe2/NiSe2 293 9.3.2.5 Other Monometal Selenides 295 9.3.2.6 Bimetallic Selenides 296 9.3.3 Metal Tellurides 298 9.4 Metal Alloys 299 9.4.1 Tin (Sn) 299 9.4.2 Antimony (Sb) 302 9.4.3 Bismuth (Bi) 304 9.4.4 Intermetallic Compounds 307 References 309 10 Effective Strategies to Restrain Dendrite Growth of Na Metal Anodes 315 10.1 Introduction 315 10.2 Liquid Electrolyte Optimization for Na Metal Anodes 316 10.2.1 Traditional Electrolyte 316 10.2.2 High-concentration Electrolyte 319 10.2.3 Ionic Liquids 322 10.3 Construction of Novel Current Collectors for Na Metal Anodes 323 10.3.1 Metallic Current Collectors 323 10.3.2 Carbon-Based Current Collectors 324 10.3.3 3D Scaffolds/Na Metal 325 10.4 Alloy-Based Na Metal Anodes 327 10.4.1 Alkali-metal Alloys 327 10.4.2 Other Metals/Na Alloys 332 10.5 Conclusions 335 References 335 11 Organic Liquid Electrolytes for Sodium-Ion Batteries 339 11.1 Introduction 339 11.2 Electrolyte Properties 339 11.3 Sodium Salts 340 11.4 Solvents 346 11.4.1 Carbonate Ester-Based Electrolytes 346 11.4.2 Carboxylate Ester-Based Electrolytes 347 11.4.3 Ether-Based Electrolytes 352 11.5 Functional Additives 358 11.5.1 Basic Characteristics of Additives 358 11.5.2 Additives for Na-Ion Batteries 359 11.5.2.1 SEI-Forming Additives for Anodes 360 11.5.2.2 CEI-Forming Additives for Cathodes 363 11.5.3 Additives for Na Metal 365 11.5.4 Safety Inspired Additives 369 11.6 Novel Concentration Electrolyte Systems 372 11.6.1 High-Concentration Electrolytes 372 11.6.2 Local High-Concentration Electrolytes 373 11.6.3 Low-Concentration Electrolytes 376 11.7 Concluding Remarks 377 References 378 12 Ionic Liquid Electrolytes for Sodium-Ion Batteries 383 12.1 Introduction 383 12.2 The Cationic Species in Ionic Liquids 384 12.3 The Anionic Species in Ionic Liquids 385 12.4 Electrolyte Properties 388 12.4.1 Physicochemical Properties 388 12.4.2 Electrochemical Properties 389 12.4.3 Thermal Properties 391 12.5 Stability of Ionic Liquids 392 12.5.1 Thermal and Electrochemical Stability 392 12.5.2 Electrochemical Properties 393 12.5.3 Electrolyte/Electrode Interfaces 396 12.6 Concluding Remarks 398 References 399 13 Solid-State and Gel Electrolytes for Sodium-Ion Batteries 401 13.1 Introduction 401 13.2 Electrolyte Characteristics 401 13.2.1 Energy Density 401 13.2.2 Ionic Conductivity 403 13.2.3 Chemical Stability 404 13.2.4 Mechanical Stability 406 13.2.5 Thermal Stability 406 13.3 Polymer Electrolytes 406 13.3.1 Solid Polymer Electrolytes (SPEs) 406 13.3.1.1 PEO-Based Electrolyte 407 13.3.1.2 PVA-Based Electrolyte 411 13.3.1.3 PAN-Based Electrolyte 414 13.3.1.4 PVP-Based Electrolyte 414 13.3.1.5 PVDF-Based Electrolyte 414 13.3.2 Na Polymer Single-Ion Conductors 415 13.3.3 Adding Ceramic Additives to Polymer Electrolytes 417 13.3.4 Gel Polymer Electrolytes (GPEs) 420 13.3.4.1 PMMA-Based GPE 420 13.3.4.2 PVDF-Based GPE 421 13.3.4.3 Nafion-Based GPE 424 13.3.5 Adding Ceramic Filler to GPEs 424 13.3.6 Cross-linked GPEs 425 13.3.7 Ionic Liquid-Based GPEs 425 13.4 Inorganic Solid-State Electrolytes 427 13.4.1 Oxide-Based Solid-State Electrolytes 427 13.4.1.1 Beta-Alumina 427 13.4.1.2 NASICON 429 13.4.2 Sulfide-Based Solid-State Electrolytes 433 13.4.2.1 Na3PS4 433 13.4.2.2 Na3SbS4 439 13.4.2.3 Na10SnP2S12 440 13.4.3 Complex Hydrides 441 13.5 Concluding Remarks 443 References 444 14 Binders for Sodium-Ion Batteries 449 14.1 Introduction 449 14.2 Main Functions and Performance Requirements of Binders 450 14.3 Polyvinylidene Fluoride (PVDF) 453 14.3.1 Chemical Properties of PVDF 453 14.3.2 Application of PVDF in Na-Ion Batteries 454 14.4 Polyacrylic Acid (PAA) 455 14.5 Carboxymethyl Cellulose (CMC) 458 14.6 Styrene Butadiene Rubber (SBR) 461 14.7 Other Binders 462 14.7.1 Sodium Alginate (SA) 462 14.7.2 Xanthan Gum (XG) 463 14.7.3 Guar Gum (GG) 463 14.7.4 Polyimide (PI) 463 14.8 Concluding Remarks 464 References 464 15 Sodium-Ion Full Batteries 467 15.1 Introduction 467 15.2 Aqueous Sodium-Ion Full Batteries 468 15.3 Nonaqueous Sodium-Ion Full Batteries 482 15.3.1 Carbon-Anode-based Sodium-Ion Full Batteries 483 15.3.2 Non-Carbon-Anode-based Sodium-Ion Full Batteries 486 15.4 Solid-state Sodium-Ion Full Batteries 493 15.4.1 Quasi-Solid-State Sodium-Ion Full Batteries 493 15.4.2 All-Solid-state Sodium-Ion Full Batteries (ASSSIFBs) 498 15.4.2.1 Polymer-Electrolyte-based ASSSIFBs 498 15.4.2.2 Ceramic-Electrolyte-based ASSSIFBs 498 15.4.2.3 Composite-Electrolyte-based ASSSIFBs 503 15.4.2.4 New Types of ASSSIFBs 504 References 506 16 Perspectives for Sodium-Ion Batteries 509 Index 519
Les mer
An essential resource with coverage of up-to-date research on sodium-ion battery technology Lithium-ion batteries form the heart of many of the stored energy devices used by people all across the world. However, global lithium reserves are dwindling, and a new technology is needed to ensure a shortfall in supply does not result in disruptions to our ability to manufacture reliable, efficient batteries. In Sodium-Ion Batteries: Energy Storage Materials and Technologies, eminent researcher and materials scientist Yan Yu delivers a comprehensive overview of the state-of-the-art in sodium-ion batteries (SIBs), including their design principles, cathode and anode materials, electrolytes, and binders. The author discusses high-performance rechargeable sodium-ion battery technology in the contexts of energy, power density, and electrochemical stability for commercialization. Exploring a wide range of literature on the recent progress made by researchers on sodium-ion battery technology, the book provides valuable perspectives on designing better materials for SIBs to unlock their practical capabilities. A thorough introduction to sodium-ion batteries, including their key materials and likely future developmentsComprehensive explorations of design principles of electrode materials and electrolytes for sodium-ion batteriesPractical discussions of cathode materials for sodium-ion batteries, including transition metal oxides, polyanionic compounds, Prussian blue analogues and organic compoundsIn-depth examinations of anode materials for sodium-ion batteries, including carbon-based materials, metal chalcogenides, metal alloys, phosphorus and Na metal anodes Perfect for materials scientists, inorganic chemists, electrochemists, and physical chemists, Sodium-Ion Batteries: Energy Storage Materials and Technologies will also earn a place in the libraries of catalytic and polymer chemists.
Les mer

Produktdetaljer

ISBN
9783527348961
Publisert
2022-03-23
Utgiver
Vendor
Blackwell Verlag GmbH
Vekt
1162 gr
Høyde
244 mm
Bredde
170 mm
Dybde
32 mm
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
560

Forfatter

Om bidragsyterne

Yan Yu, PhD is Full Professor of Material Science at the University of Science and Technology of China. Her research is focused on the design of novel nanomaterials for clean energy, especially for batteries and the fundamental science of energy storage systems.