This book reports on advanced strategies to design, modeling and testing morphing wings for aeronautical applications. Covering the major outcomes of the multidisciplinary project “Smart Morphing & Sensing” (H2020 N° 723402 SMS), funded by the European Union between 2017 and 2020, it presents a complete set of theories and methods that have been used and developed to integrate novel electroactive actuators and sensors in wings, for the purpose of increasing their aerodynamic efficiency and attenuate vibrations and noise. Topics include: integrated aeroelastic design of morphing wings using high-fidelity computational fluid dynamics and structural mechanics, distributed sensing using a new generation of high-fidelity fiber optics sensors, and controller design by appropriate flight control commands. Further, the book reports on advanced experimental techniques to validate novel actuation and sensing systems on the built prototypes via wind tunnel tests at subsonic (take-offand landing) and transonic (cruise) speeds. All in all, this volume provides readers with extensive and timely information on research and developments of bioinspired aircraft wings.


Les mer

This book reports on advanced strategies to design, modeling and testing morphing wings for aeronautical applications.

Prototypes and electroactive actuators design.- Subsonic regime sRS wing.- Transonic regime tRS wing.- Sensing.- Control law definition.- Experimental study of the aerodynamic performance increase Subsonic regime.- Transonic regime.- Prototype and actuator design.- Sensing multipoint system through Bragg grating.- Control law definition.- Experimental study - characterization of the LS in take-off conditions.- Advanced CFD.- Structural mechanics involving electroactive properties.- Numerical results on the sRS prototype: take-off conditions.- Numerical results on the tRS prototype: cruise conditions.- Numerical results on the LS prototype: take-off and landing.- Sensitivity analysis through adjoined-based MDO.- Numerical results on the whole aircraft (morphing A320).- Synthesis on the numerical simulations major outcomes.- sRS control for aerodynamic performance increase.- tRS final experimental evaluation in cruise.- LS final experimental evaluation in take-off and landing.- Synthesison the final demonstrators.

Les mer

This book reports on advanced strategies to design, modeling and testing morphing wings for aeronautical applications. Covering the major outcomes of the multidisciplinary project “Smart Morphing & Sensing” (H2020 N° 723402 SMS), funded by the European Union between 2017 and 2020, it presents a complete set of theories and methods that have been used and developed to integrate novel electroactive actuators and sensors in wings, for the purpose of increasing their aerodynamic efficiency and attenuate vibrations and noise. Topics include: integrated aeroelastic design of morphing wings using high-fidelity computational fluid dynamics and structural mechanics, distributed sensing using a new generation of high-fidelity fiber optics sensors, and controller design by appropriate flight control commands. Further, the book reports on advanced experimental techniques to validate novel actuation and sensing systems on the built prototypes via wind tunnel tests at subsonic (take-offand landing) and transonic (cruise) speeds. All in all, this volume provides readers with extensive and timely information on research and developments of bioinspired aircraft wings. 

 


Les mer
Reports on novel smart morphing prototypes and electrodynamic actuators Describes solutions to increase aerodynamic performance Covers numerical and experimental findings, and real-world case studies
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783031225796
Publisert
2023-02-15
Utgiver
Springer International Publishing AG; Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
275