Self-Healing Composite Materials: From Designs to Applications provides a unique resource on self-healing composites for materials scientists and engineers in academia, as well as researchers involved in the aerospace, automotive, wind-generation, construction, consumer goods and marine industries. There is a huge demand for self-healing composites that respond to their environment like living matter. Unlike other composites, self-healing composites are combined with carbon materials and resins to form a recoverable composite material. This book covers the manufacturing, design and characterization of self-healing composites, including their morphological, structural, mechanical, thermal and electrical properties. The title begins with mathematical background and then considers innovative approaches to physical modeling, analysis and design techniques, providing a robust knowledge of modern self-healing composites with commercial applications.
Les mer
1. Electrically conductve self healing materials: preparation, properties and applications 2. Basics of self-healing composite materials 3. Self-healing polymers for composite structural applications 4. Potential self-healing functionality in a composite structure: methodology and applications 5. Carbon self-repairing porous hybrid composites 6. Self-repairing property of polymer network with dangling chains 7. Self-Healing materials through self-mending polymers and composites 8. Self-Healing composite coatings with protective and anticorrosion potentials 9. Graphene based self healing materials 10. Enhancements in self-curing composites 11. Principle and mechanism of self-repair of polymer matrix composite materials 12. Composites for self-repairing covering to hinder corrosion 13. Synthesis of carbon self-repairing porous hybrid composites for supercapacitors 14. Effect of self-healing on zeolite-immobilized bacterial cementitious mortar composites 15. Self-Healing Concrete-Based Composites for Infrastructures 16. Development of self-healing carbon/epoxy composites 17. Self-repairing hollow fiber composites 18. Self-healing of Structural Composites containing common Thermoplastics enabled or not by Nanotechnology as Healing Agent 19. Concept of self-repair and efficiency measurement in polymer matrix composite 20. Self-healing fiber reinforced epoxy composite 21. Mechanical Behavior of Self-Healing PEI/PAA Multi-level Polymer Films
Les mer
Presents self-healing composites, their manufacturing, design, characterization and application
Covers composite fabrication from polymer, nano oxides, epoxy and plastics Gives detailed examples on how self-healing composites may be used Provides readers with a robust knowledge of self-healing composites Presents a unified approach to these human-friendly, commercially valuable materials
Les mer

Produktdetaljer

ISBN
9780128173541
Publisert
2019-10-29
Utgiver
Vendor
Woodhead Publishing
Vekt
700 gr
Høyde
229 mm
Bredde
152 mm
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
442

Om bidragsyterne

Dr. Anish Khan is Currently working as Assistant Professor, Chemistry Department, Centre of Excellence for Advanced Materais Research (CEAMR), Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. Ph.D. from Aligarh Muslim University, India from 2010. Research experience of working in the field of synthetic polymers, organic-inorganic electrically conducting nano-composites. Complete Postdoctoral from School of Chemical Sciences, University Sains Malaysia (USM) electroanalytical chemistry in 2010-2011. Research and teaching experiance, more than 100 research papers published in reffered international journal. More then 20 international conferences/ workshop and 3 books published 6 in Progress and 12 Book chapters. Around 20 research project completed. Manageriel Editor of Chemical and Environmental Research (CER) Journal, Member of American Nano Society, Field of specialization is polymer nano composite/cation-exchanger/chemical sensor/microbiosensor/nanotechnology, application of nano materials in electroanalytical chemistry, material chemistry, ion-exchange chromatography and electro-analytical chemistry, dealing with the synthesis, characterization (using different analytical techniques) and derivatization of inorganic ion-exchanger by the incorporation of electrically conducting polymers. Preparation and characterization of hybrid nano composite materials and their applications, Polymeric inorganic cation –exchange materials, Electrically conducting polymeric, materials, Composite material use as Sensors, Green chemistry by remediation of pollution, Heavy metal ion selective membrane electrode, Biosensor on neurotransmitter. Dr. Mohammad Jawaid is a professor at Biocomposite Technology Laboratory, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Malaysia, and also has been Visiting Professor at the Department of Chemical Engineering, College of Engineering, King Saud University, Saudi Arabia, since June 2013. He has more than 16 years of experience in teaching, research, and industries. His area of research interests includes hybrid composites, lignocellulosic reinforced/filled polymer composites, advance materials: graphene/nanoclay/fire retardant, modification and treatment of lignocellulosic fibers and solid wood, biopolymers and biopolymers for packaging applications, nanocomposites and nanocellulose fibers, and polymer blends. Raveendran N. Shiju is Associate Professor in the Van’t Hoff Institute for Molecular Sciences at the University of Amsterdam, and a Visiting Professor at Yangzhou University in China. He has won several significant prizes for his research, including the New Idea Prize from Amsterdam Science Park for the discovery of a new catalyst for nylon manufacture. He holds a PhD from the National Chemical Laboratory in Pune, India, and has published internationally. Abdullah Mohamed Asiri is Professor, in the Chemistry Department, Faculty of Science, at King Abdulaziz University, Saudi Arabia. He is currently Chairman of the Chemistry Department, King Abdulaziz University, Director of the Center of Excellence for Advanced Materials Research. His research focuses on nanochemistry and nanotechnology.