Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention outlines how nanotechnology and space technology could be applied for the detection of disaster risks in early stages, using cheap sensors, cheap constellations of low Earth orbit (LEO) satellites, and smart wireless networks with artificial intelligence (AI) tools. Nanomaterial-based sensors (nanosensors) can offer several advantages over their micro-counterparts, such as lower power or self-powered consumption, high sensitivity, lower concentration of analytes, and smaller interaction distances between the object and the sensor. Besides this, with the support of AI tools, such as fuzzy logic, genetic algorithms, neural networks, and ambient intelligence, sensor systems are becoming smarter when a large number of sensors are used. This book is an important reference source for materials scientists, engineers, and environmental scientists who are seeking to understand how nanotechnology-based solutions can help mitigate natural disasters.
Les mer
SECTION 1 Nanotechnology for Disaster Prevention 1. Application of nanotechnology in disaster prevention: an introduction 2. Nanomaterials for construction building products designed to withstand natural disasters 3. Nano-sensors and nano-devices for biological disaster monitoring (virus/disease epidemics/animal plagues detections) 4. Wireless sensor networks and IoT for disaster management 5. Nanosensors for Smartphone Enabled Sensing Devices 6. Smart and autonomous (self-powered) nanosensor networks 7. Nano sensors for smartphone sensing method SECTION 2 Space Technology for Disaster Prevention 8. Nanotechnology in the space industry 9. Unmanned Aerial Vehicles (UAVs) for Disaster Management 10. The synergy of satellite remote sensing and Geographical Information Systems in natural disaster management 11. Small satellites for disaster monitoring 12. A comparative study of deep learning-based time-series forecasting techniques for fine-scale urban extreme heat prediction using Internet of Things observations 13. Satellite and aerial remote sensing in disaster managements: an introduction 14. Emerging Role of Unmanned Aerial Vehicles (UAVs) for Disaster Management Applications 15. Smart remote sensing network for early warning of disaster risks
Les mer
A detailed examination of how nanotechnology can be combined with space technology to provide more efficient disaster prevention and mitigation solutions
Shows how nanotechnology-based solutions can be combined with space technology to provide more effective disaster management solutions Explores the best materials for manufacturing different types of nanotechnology-based remote sensing devices Assesses the challenges of creating a nanotechnology-based disaster mitigation system in a cost-effective way
Les mer

Produktdetaljer

ISBN
9780323911665
Publisert
2022-05-31
Utgiver
Vendor
Elsevier - Health Sciences Division
Vekt
720 gr
Høyde
235 mm
Bredde
191 mm
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
350

Redaktør

Om bidragsyterne

Adil Denizli is Professor at Hacettepe University, Department of Chemistry, Ankara, Turkey. His main research fields are molecular imprinting technologies, purification of biomolecules by chromatographic methods, detection of molecules by sensors, production of polymers with different surface and bulk properties, shape and geometries, and application of these polymers in different applications. Marcelo Alencar is Chair Professor at the Department of Electrical Engineering, Federal University of Campina Grande, Brazil. His research is in communication and information systems. Tuan Anh Nguyen is Senior Principal Research Scientist at the Institute for Tropical Technology, Vietnam Academy of Science and Technology, Vietnam. He received B.S. in Physics from Hanoi University in 1992, and Ph.D. in Chemistry from the Paris Diderot University (France) in 2003. He was Visiting Scientist at Seoul National University (South Korea, 2004) and University of Wollongong (Australia, 2005). He then worked as Postdoctoral Research Associate and Research Scientist in the Montana State University (USA), 2006-2009. In 2012, he was appointed as the Head of the Microanalysis Department at Institute for Tropical Technology. His research activities include smart sensors, smart networks, smart hospitals, smart cities and digital twins. He edited over 70 Elsevier, 12 CRC Press, 1 Springer, 1 RSC and 2 IGI Global books. He is Editor-In-Chief of "Kenkyu Journal of Nanotechnology & Nanoscience". David Motaung is Professor in the Department of Physics, University of Limpopo, Sovenga, South Africa. His current research interests include design, synthesis and characterization of semiconductor metal oxides, nanostructured materials and their application in gas sensing devices for air quality monitoring.