Preface xiii 1 Application of MOFs and Their Derived Materials in Sensors 1Yong Wang, Chang Yin and Qianfen Zhuang 1.1 Introduction 1 1.2 Application of MOFs and Their Derived Materials in Sensors 3 1.2.1 Optical Sensor 3 1.2.1.1 Colorimetric Sensor 3 1.2.1.2 Fluorescence Sensor 7 1.2.1.3 Chemiluminescent Sensor 11 1.2.2 Electrochemical Sensor 13 1.2.2.1 Amperometric Sensor 13 1.2.2.2 Impedimetric, Electrochemiluminescence, and Photoelectrochemical Sensor 16 1.2.3 Field-Effect Transistor Sensor 19 1.2.4 Mass-Sensitive Sensor 21 1.3 Conclusion 22 Acknowledgments 23 References 23 2 Applications of Metal–Organic Frameworks (MOFs) and Their Derivatives in Piezo/Ferroelectrics 33H. Manjunatha, K. Chandra Babu Naidu, N. Suresh Kumar, Ramyakrishna Pothu and Rajender Boddula 2.1 Introduction 34 2.1.1 Brief Introduction to Piezo/Ferroelectricity 34 2.2 Fundamentals of Piezo/Ferroelectricity 34 2.3 Metal–Organic Frameworks for Piezo/Ferroelectricity 40 2.4 Ferro/Piezoelectric Behavior of Various MOFs 40 2.5 Conclusion 52 References 53 3 Fabrication and Functionalization Strategies of MOFs and Their Derived Materials “MOF Architecture” 63Demet Ozer 3.1 Introduction 63 3.2 Fabrication and Functionalization of MOFs 65 3.2.1 Metal Nodes 65 3.2.2 Organic Linkers 68 3.2.3 Secondary Building Units 76 3.2.4 Synthesis Methods 77 3.2.4.1 Hydrothermal and Solvothermal Method 77 3.2.4.2 Microwave Synthesis 78 3.2.4.3 Electrochemical Method 80 3.2.4.4 Mechanochemical Synthesis 81 3.2.4.5 Sonochemical (Ultrasonic Assisted) Method 81 3.2.4.6 Diffusion Method 82 3.2.4.7 Template Method 82 3.2.5 Synthesis Strategies 83 3.3 MOF Derived Materials 89 3.4 Conclusion 90 References 90 4 Application of MOFs and Their Derived Materials in Molecular Transport 101Arka Bagchi, Partha Saha, Arunima Biswas and SK Manirul Islam 4.1 Introduction 102 4.2 MOFs as Nanocarriers for Membrane Transport 102 4.2.1 MIL-89 103 4.2.2 MIL-88A 103 4.2.3 MIL-100 104 4.2.4 MIL-101 104 4.2.5 MIL-53 104 4.2.6 ZIF-8 104 4.2.7 Zn-TATAT 105 4.2.8 BioMOF-1 (Zn) 105 4.2.9 UiO (Zr) 105 4.3 Conclusion 106 References 106 5 Role of MOFs as Electro/-Organic Catalysts 109Manorama Singh, Ankita Rai, Vijai K. Rai, Smita R. Bhardiya and Ambika Asati 5.1 What Is MOFs 109 5.2 MOFs as Electrocatalyst in Sensing Applications 111 5.3 MOFs as Organic Catalysts in Organic Transformations 114 5.4 Conclusion and Future Prospects 115 References 116 6 Application of MOFs and Their Derived Materials in Batteries 121Rituraj Dutta and Ashok Kumar 6.1 Introduction 122 6.2 Metal–Organic Frameworks 126 6.2.1 Classification and Properties of Metal–Organic Frameworks 127 6.2.2 Potential Applications of MOFs 130 6.2.3 Synthesis of MOFs 133 6.3 Polymer Electrolytes 135 6.3.1 Historical Perspectives and Classification of Polymer Electrolytes 136 6.3.2 MOF Based Polymer Electrolytes 139 6.4 Ionic Liquids 142 6.4.1 Properties of Ionic Liquids 143 6.4.2 Ionic Liquid Incorporated MOF 145 6.5 Ion Transport in Polymer Electrolytes 147 6.5.1 General Description of Ionic Conductivity 147 6.5.2 Models for Ionic Transport in Polymer Electrolytes 148 6.5.3 Impedance Spectroscopy and Ionic Conductivity Measurements 152 6.5.4 Concept of Mismatch and Relaxation 155 6.5.5 Scaling of ac Conductivity 156 6.6 IL Incorporated MOF Based Composite Polymer Electrolytes 157 6.7 Conclusion and Perspectives 166 References 168 7 Fine Chemical Synthesis Using Metal–Organic Frameworks as Catalysts 177Aasif Helal 7.1 Introduction 177 7.2 Oxidation Reaction 179 7.2.1 Epoxidation 179 7.2.2 Sulfoxidation 181 7.2.3 Aerobic Oxidation of Alcohols 182 7.3 1,3-Dipolar Cycloaddition Reaction 183 7.4 Transesterification Reaction 183 7.5 C–C Bond Formation Reactions 184 7.5.1 Heck Reactions 184 7.5.2 Sonogashira Coupling 186 7.5.3 Suzuki Coupling 186 7.6 Conclusion 187 References 187 8 Application of Metal Organic Framework and Derived Material in Hydrogenation Catalysis 193Tejaswini Sahoo, Jagannath Panda, Jnana Ranjan Sahu and Rojalin Sahu 8.1 Introduction 193 8.1.1 The Active Centers in Parent MOF Materials 195 8.1.2 The Active Centers in MOF Catalyst 195 8.1.3 Metal Nodes 196 8.2 Hydrogenation Reactions 197 8.2.1 Hydrogenation of Alpha–Beta Unsaturated Aldehyde 197 8.2.2 Hydrogenation of Cinnamaldehyde 198 8.2.3 Hydrogenation of Nitroarene 199 8.2.4 Hydrogenation of Nitro Compounds 201 8.2.5 Hydrogenation of Benzene 202 8.2.6 Hydrogenation of Quinoline 205 8.2.7 Hydrogenation of Carbon Dioxide 206 8.2.8 Hydrogenation of Aromatics 207 8.2.9 Hydrogenation of Levulinic Acid 207 8.2.10 Hydrogenation of Alkenes and Alkynes 208 8.2.11 Hydrogenation of Phenol 210 8.3 Conclusion 210 References 211 9 Application of MOFs and Their Derived Materials in Solid-Phase Extraction 219Adrián Gutiérrez-Serpa, Iván Taima-Mancera, Jorge Pasán, Juan H. Ayala and Verónica Pino 9.1 Solid-Phase Extraction 220 9.1.1 Materials in SPE 223 9.2 MOFs and COFs in Miniaturized Solid-Phase Extraction (μSPE) 225 9.3 MOFs and COFs in Miniaturized Dispersive Solid-Phase Extraction (D-μSPE) 232 9.4 MOFs and COFs in Magnetic-Assisted Miniaturized Dispersive Solid-Phase Extraction (m-D-μSPE) 239 9.5 Concluding Remarks 249 Acknowledgments 249 References 249 10 Anticancer and Antimicrobial MOFs and Their Derived Materials 263Nasser Mohammed Hosny 10.1 Introduction 263 10.2 Anticancer MOFs 264 10.2.1 MOFs as Drug Carriers 264 10.2.2 MOFs in Phototherapy 269 10.3 Antibacterial MOFs 272 10.4 Antifungal MOFs 278 References 280 11 Theoretical Investigation of Metal–Organic Frameworks and Their Derived Materials for the Adsorption of Pharmaceutical and Personal Care Products 287Jagannath Panda, Satya Narayan Sahu, Tejaswini Sahoo, Biswajit Mishra, Subrat Kumar Pattanayak and Rojalin Sahu 11.1 Introduction 288 11.2 General Synthesis Routes 290 11.2.1 Hydrothermal Synthesis 295 11.2.2 Solvothermal Synthesis of MOFs 296 11.2.3 Room Temperature Synthesis 296 11.2.4 Microwave Assisted Synthesis 296 11.2.5 Mechanochemical Synthesis 297 11.2.6 Electrochemical Synthesis 297 11.3 Postsynthetic Modification in MOF 297 11.4 Computational Method 297 11.5 Results and Discussion 299 11.5.1 Binding Behavior Between MIL-100 With the Adsorbates (Diclofenac, Ibuprofen, Naproxen, and Oxybenzone) 299 11.6 Conclusion 303 References 304 12 Metal–Organic Frameworks and Their Hybrid Composites for Adsorption of Volatile Organic Compounds 313Shella Permatasari Santoso, Artik Elisa Angkawijaya, Vania Bundjaja, Felycia Edi Soetaredjo and Suryadi Ismadji 12.1 Introduction 314 12.2 VOCs and Their Potential Hazards 315 12.2.1 Other Sources of VOCs 319 12.3 VOCs Removal Techniques 320 12.4 Fabricated MOF for VOC Removal 324 12.4.1 MIL Series MOFs 325 12.4.2 Isoreticular MOFs 327 12.4.2.1 Adsorption Comparison of the Isoreticular MOFs 330 12.4.3 NENU Series MOFs 332 12.4.4 MOF-5, Eu-MOF, and MOF-199 333 12.4.5 Amine-Impregnated MIL-100 334 12.4.6 Biodegradable MOFs MIL-88 Series 335 12.4.7 Catalytic MOFs 335 12.4.8 Photo-Degradating MOFs 336 12.4.9 Some Other Studied MOFs 337 12.5 MOF Composites 338 12.5.1 MIL-101 Composite With Graphene Oxide 338 12.5.2 MIL-101 Composite With Graphite Oxide 338 12.6 Generalization Adsorptive Removal of VOCs by MOFs 340 12.7 Simple Modeling the Adsorption 340 12.7.1 Thermodynamic Parameters 340 12.7.2 Dynamic Sorption Methods 341 12.8 Factor Affecting VOCs Adsorption 344 12.8.1 Breathing Phenomena 344 12.8.2 Activation of MOFs 345 12.8.3 Applied Pressure 346 12.8.4 Relative Humidity 347 12.8.5 Breakthrough Conditions 347 12.8.6 Functional Group of MOFs 347 12.8.7 Concentration, Molecular Size, and Type of VOCs 348 12.9 Future Perspective 349 References 350 13 Application of Metal–Organic Framework and Their Derived Materials in Electrocatalysis 357Gopalram Keerthiga, Peramaiah Karthik and Bernaurdshaw Neppolian List of Abbreviations 358 13.1 Introduction 358 13.2 Perspective Synthesis of MOF , and Their Derived Materials 360 13.3 MOF for Hydrogen Evolution Reaction 362 13.4 MOF for Oxygen Evolution Reaction 363 13.5 MOF for Oxygen Reduction Reaction 365 13.6 MOF for CO2 Electrochemical Reduction Reaction 366 13.6.1 Electrosynthesis of MOF for CO2 Reduction 366 13.6.2 Composite Electrodes as MOF for CO2 Reduction 367 13.6.3 Continuous Flow Reduction of CO2 369 13.6.4 CO2 Electrochemical Reduction in Ionic Liquid 369 13.7 MOF for Electrocatalytic Sensing 370 13.8 Electrocatalytic Features of MOF 371 13.9 Conclusion 372 Acknowledgment 372 References 372 14 Applications of MOFs and Their Composite Materials in Light-Driven Redox Reactions 377Elizabeth Rojas-García, José M. Barrera-Andrade, Elim Albiter, A. Marisela Maubert and Miguel A. Valenzuela 14.1 Introduction 378 14.1.1 MOFs as Photocatalysts 381 14.1.2 Charge Transfer Mechanisms 382 14.1.3 Methods of Synthesis 385 14.2 Pristine MOFs and Their Application in Photocatalysis 387 14.2.1 Group 4 Metallic Clusters 387 14.2.2 Groups 8, 9, and 10 Metallic Clusters 393 14.2.3 Group 11 Metallic Clusters 393 14.2.4 Group 12 Metallic Clusters 403 14.3 Metal Nanoparticles–MOF Composites and Their Application in Photocatalysis 413 14.3.1 Ag–MOF Composites 415 14.3.2 Au–MOF Composites 417 14.3.3 Cu–MOF Composites 417 14.3.4 Pd–MOF Composites 418 14.3.5 Pt–MOF Composites 419 14.4 Semiconductor–MOF Composites and Their Application in Photocatalysis 421 14.4.1 TiO2–MOF Composites 422 14.4.2 Graphitic Carbon Nitride–MOF Composites 426 14.4.3 Bismuth-Based Semiconductors 429 14.4.4 Reduced Graphene Oxide–MOF Composites 430 14.4.5 Silver-Based Semiconductors 436 14.4.6 Other Semiconductors 438 14.5 MOF-Based Multicomponent Composites and Their Application in Photocatalysis 442 14.5.1 Semiconductor–Semiconductor–MOF Composites 442 14.5.2 Semiconductor–Metal–MOF Composites 443 14.6 Conclusions 446 References 448 Index 463
Les mer