This lecture provides a tutorial introduction to the Nyström and locally-corrected Nyström methods when used for the numerical solutions of the common integral equations of two-dimensional electromagnetic fields. These equations exhibit kernel singularities that complicate their numerical solution. Classical and generalized Gaussian quadrature rules are reviewed. The traditional Nyström method is summarized, and applied to the magnetic field equation for illustration. To obtain high order accuracy in the numerical results, the locally-corrected Nyström method is developed and applied to both the electric field and magnetic field equations. In the presence of target edges, where current or charge density singularities occur, the method must be extended through the use of appropriate singular basis functions and special quadrature rules. This extension is also described. Table of Contents: Introduction / Classical Quadrature Rules / The Classical Nyström Method / The Locally-Corrected Nyström Method / Generalized Gaussian Quadrature / LCN Treatment of Edge Singularities
Les mer
Table of Contents: Introduction / Classical Quadrature Rules / The Classical Nyström Method / The Locally-Corrected Nyström Method / Generalized Gaussian Quadrature / LCN Treatment of Edge Singularities
Les mer
Introduction.- Classical Quadrature Rules.- The Classical Nyström Method.- The Locally-Corrected Nyström Method.- Generalized Gaussian Quadrature.- LCN Treatment of Edge Singularities.

Produktdetaljer

ISBN
9783031005824
Publisert
2009-11-06
Utgiver
Vendor
Springer International Publishing AG
Høyde
235 mm
Bredde
191 mm
Aldersnivå
Professional/practitioner, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet

Om bidragsyterne

Andrew F. Peterson received the B.S., M.S., and Ph.D. degrees in Electrical Engineering from the University of Illinois, Urbana-Champaign in 1982, 1983, and 1986 respectively. Since 1989, he has been a member of the faculty of the School of Electrical and Computer Engineering at the Georgia Institute of Technology, where he is now Professor and Associate Chair for Faculty Development. He teaches electromagnetic field theory and computational electromagnetics, and conducts research in the development of computational techniques for electromagnetic scattering, microwave devices, and electronic packaging applications.