This book describes various aspects of nanoscience and nanotechnology. It begins with an introduction to nanoscience and nanotechnology and includes a historical prospective, nanotechnology working in nature, man -made nanomaterial and impact of nanotechnology illustrated with examples. It goes on to describes general synthetic approaches and strategies and also deals with the characterization of nanomaterial using modern tools and techniques to give basic understanding to those interested in learning this emerging area. It then deals with different kinds of nanomaterial such as inorganics, carbon based-, nanocomposites and self-assembled/supramolecular nano structures in terms of their varieties, synthesis, properties etc. In addition, it contains chapters devoted to unique properties with mathematical treatment wherever applicable and the novel applications dealing with information technology, pollution control (environment, water), energy, nanomedicine, healthcare, consumer goods etc.
Les mer
This book describes various aspects of nanoscience and nanotechnology. It begins with an introduction to nanoscience and nanotechnology and includes a historical prospective, nanotechnology working in nature, man -made nanomaterial and impact of nanotechnology illustrated with examples.
Les mer
Preface xiii Acknowledgments xv About the Authors xvii 1 Introduction 1 1.1 Definitions of Nanoscience and Nanotechnologies 1 1.2 Uniqueness of the Nanoscale 3 1.3 Nanoscience in Nature 4 1.3.1 Naturally Occurring Nanomaterials 7 1.3.2 Nanoscience in Action in Biological World 8 1.4 Historical Perspective 10 1.5 Nanomaterials 13 1.5.1 Nanoparticles 16 1.5.2 Nanowires and Nanotubes 17 1.5.3 Nanolayers/Nanocoatings 17 1.5.4 Nanoporous Materials 17 1.6 Strategies for Synthesis of Nanomaterials 18 1.7 Properties of Nanomaterials 18 1.8 Significance of Nanoscience 19 1.9 Commercial Applications 20 1.9.1 Food Industry 22 1.9.2 Cosmetics 22 1.9.3 Textile 22 1.9.4 Medicine 22 1.9.5 Electrical and Electronic Goods 23 1.10 Potential Health Hazards and Environmental Risks 24 1.11 Futuristic Outlook 25 Review Questions 26 References 27 2 Nanomaterials: General Synthetic Approaches 29 2.1 Introduction 29 2.2 Top-Down Approach 30 2.2.1 Mechanical Milling 31 2.2.2 Mechanochemical Processing (MCP) 32 2.2.3 Electro-Explosion 33 2.2.4 Sputtering 34 2.2.5 Etching 34 2.2.6 Laser Ablation 36 2.2.7 Lithography 37 2.2.8 Aerosol-Based Techniques 43 2.2.9 Electrospinning 47 2.3 Bottom-Up Approaches 49 2.3.1 Chemical Vapor Deposition 49 2.3.2 Chemical Vapor Condensation (CVC) 54 2.3.3 Plasma Arcing 55 2.3.4 Wet Chemical Methods 55 2.3.5 Hydrothermal/Solvothermal 60 2.3.6 Reverse Micelle Method 60 2.3.7 Sol–Gel Method 61 2.3.8 Sonochemical Method 64 2.3.9 Biomimetic Approaches 66 2.3.10 Molecular Self-Assembly 70 2.3.11 Langmuir–Blodgett (LB) Film Formation 71 2.3.12 Stabilization and Functionalization of Nanoparticles 72 Review Questions 73 References 74 3 Characterization Tools for Nanomaterials 77 3.1 Introduction 77 3.2 Imaging Through Electron Microscopy 79 3.2.1 Scanning Electron Microscope (SEM) 85 3.2.2 Transmission Electron Microscope (TEM) 91 3.3 Scanning Probe Microscopy (SPM) 97 3.3.1 Scanning Tunneling Microscope (STM) 97 3.3.2 Atomic Force Microscope (AFM) 102 3.4 Characterization Through Spectroscopy 107 3.4.1 UV–Visible Plasmon Absorption and Emission 108 3.4.2 Vibrational Spectroscopies: FTIR and Raman Spectroscopy 109 3.4.3 Raman Spectroscopy Based Imaging 116 3.4.4 X-Ray Photoelectron Spectroscopy (XPS) 119 3.4.5 Auger Electron Spectroscopy 126 3.4.6 Secondary Ion Mass Spectrometry (SIMS) 130 3.5 Scattering Techniques 133 3.5.1 X-Ray Diffraction Methods 134 3.5.2 Dynamic Light Scattering (DLS) 140 3.5.3 Zeta Potential Analysis 142 Review Questions 145 References 146 4 Nanomaterials 149 4.1 Introduction 149 4.2 Inorganic Nanomaterials 150 4.2.1 Metals and Alloys 150 4.2.2 Metal Oxides of Transition and Non-transition Elements 156 4.2.3 Non-oxide Inorganic Nanomaterials 161 4.3 Organic Nanomaterials 161 4.3.1 Polymeric Nanoparticles 161 4.3.2 Polymeric Nanofilms 162 4.3.3 Nanocellulose 162 4.3.4 Biodegradable Polymer Nanoparticles 165 4.3.5 Dendrimers 165 4.4 Biological Nanomaterials 166 4.4.1 Categories 167 4.4.2 Potential Applications 169 4.5 Nanoporous Materials 170 4.6 Quantum Dots 173 4.7 Nanoclusters 175 4.8 Nanomaterials in Different Configurations 178 4.8.1 Nanofibers 179 4.8.2 Nanowires 179 4.8.3 Nanotubes 180 4.8.4 Nanobelts 183 4.8.5 Nanorods 184 Review Questions 185 References 186 5 Carbon-Based Nanomaterials 189 5.1 General Introduction 189 5.1.1 Carbon Nanomaterials: Synthetic Carbon Allotropes (SCAs) 190 5.2 Fullerene 192 5.2.1 Properties of Fullerene 193 5.2.2 Application Potentials of Fullerene 195 5.3 Carbon Nanotubes (CNTs) 196 5.3.1 Classification of CNTs 196 5.3.2 Synthesis of CNTs 198 5.3.3 Functionalization of CNTs 203 5.3.4 Purification of CNTs 205 5.3.5 Special Properties of Carbon Nanotubes 207 5.3.6 Applications 208 5.4 Graphene 208 5.4.1 Electronic Structure of Graphene 210 5.4.2 Unique Properties of Graphene 211 5.4.3 Synthesis 212 5.4.4 Characterization of Graphene 219 5.4.5 Applications 221 5.5 Carbon Nano-Onions 222 5.6 Carbon Nanofibers 224 5.7 Carbon Black 225 5.7.1 Crystallinity 227 5.7.2 Homogeneity and Uniformity 227 5.8 Nanodiamond 227 5.8.1 Synthesis of Nanodiamond 228 5.8.2 Properties 230 5.8.3 Applications 232 Review Questions 233 References 234 6 Self-Assembled and Supramolecular Nanomaterials 237 6.1 Introduction: Self-Assembly 237 6.1.1 Supramolecular Chemistry 238 6.2 Historical Perspective of Supramolecular and Self-Assembled Structures 239 6.3 Fundamental Aspects of Supramolecular Chemistry 240 6.3.1 Molecular Self-Assembly 241 6.3.2 Molecular Recognition and Complexation 242 6.3.3 Mechanically Interlocked Molecular Architectures 242 6.3.4 Supramolecular Organic Frameworks (SOFs) 242 6.3.5 Biomimetic 243 6.3.6 Imprinting 243 6.3.7 Molecular Machines 243 6.4 Self-Assembly Via Non-Covalent Interaction 244 6.4.1 Long-Range Forces in Self-Assembly 244 6.4.2 Short-Range Forces in Self-Assembly 247 6.4.3 Self-Assembly in Soft Materials 250 6.4.4 Advantages of Self-Assembly 251 6.4.5 Challenges in Self-Assembly 252 6.5 Synthetic Strategies for Molecular Self-Assembly 252 6.5.1 Physiosorption (Patterned Organic Monolayers) 253 6.5.2 Chemisorption 254 6.5.3 Metal Ion–Ligand Interactions 254 6.6 Biological Self-Assembly 255 6.7 Templated (Non-Molecular) Self-Assembly 256 6.7.1 Self-Assembly Through Capillary Interactions 257 6.7.2 Self Assembly Through Lego Chemistry 258 6.8 Self-Assembled Supramolecular Nanostructures 260 6.8.1 Inorganic Colloidal Systems 261 6.8.2 Liquid-Crystalline Structures 262 6.8.3 Self-Assembled Structured Nano-Objects in Unusual Shapes 263 6.9 Self-Folding Nanostructures 263 6.10 Applications 264 6.10.1 Supramolecular Chemistry 264 6.10.2 Self-Assembled Nanomaterials 265 6.10.3 Nanomotors 266 Review Questions 267 References 268 7 Nanocomposites 271 7.1 Introduction 271 7.1.1 Man-Made Ancient Composites 272 7.1.2 Modern Examples of Composites 273 7.1.3 Nanocomposites 273 7.1.4 Structure and Composition of Nanocomposites 274 7.1.5 Properties of Composite Materials 276 7.1.6 Classification of Nanocomposites 277 7.2 Ceramic–Matrix Nanocomposites 279 7.2.1 Structural Ceramic Nanocomposites 279 7.2.2 Functional Ceramic Nanocomposites 283 7.3 Metal–Matrix Nanocomposites 284 7.3.1 Metal–Ceramic Nanocomposites 285 7.3.2 Carbon Nanotubes–Metal Matrix Composites 286 7.4 Polymer–Matrix Nanocomposites 289 7.4.1 Polymer–Inorganic Nanocomposites (PINCs) 291 7.4.2 Polymer–Clay Nanocomposites (PCNs) 299 7.4.3 Polymer–Carbon Nanocomposites 306 7.4.4 Polymer–Polysaccharide Nanocomposites 310 7.5 Nanocoatings 313 7.5.1 Functional Nanocoating 314 7.5.2 Smart (Responsive) Nanocoatings 321 Review Questions 322 References 323 8 Unique Properties 326 8.1 Introduction 326 8.2 Size Effects 327 8.2.1 Quantum Confinement 328 8.2.2 The Density of States (DOS) 330 8.2.3 High Surface Area 332 8.3 Physical Properties 334 8.3.1 Thermal Properties 335 8.3.2 Optical Properties 336 8.3.3 Electronic Properties 341 8.3.4 Electrical Properties 342 8.3.5 Magnetic Properties 346 8.3.6 Mechanical Properties 352 8.4 Chemical Properties at Nanoscale 353 8.4.1 Bonding 353 8.4.2 Surface Properties 354 8.4.3 Catalysis 354 8.4.4 Detection 355 8.5 The Concept of Pseudo-Atoms 356 Review Questions 356 References 358 9 Applications of Nanotechnology 361 9.1 Introduction 361 9.2 Medicine and Healthcare 363 9.2.1 Diagnosis 363 9.3 Drug Development and Drug Delivery System 368 9.3.1 Drug Design and Screening 368 9.3.2 Advanced Drug Delivery Systems 369 9.3.3 Targeted Drug Delivery 371 9.3.4 Remotely Triggered Delivery Systems 372 9.3.5 Therapy 372 9.3.6 Tissue and Biomaterial Engineering 373 9.4 Information and Computer Technologies 374 9.4.1 Integrated Circuits 375 9.4.2 Data Storage 376 9.4.3 Displays 378 9.5 Nanoelectromechanical Systems (NEMS) 380 9.6 Nanotechnologies in Tags 381 9.7 Nanotechnology for Environmental Issues 382 9.7.1 Water Purification and Remediation 383 9.7.2 Nanotechnology for Air Pollution Control 384 9.8 Energy 385 9.8.1 Photovoltaic Technologies for Solar-Energy Harvesting 386 9.8.2 Artificial Photosynthesis: Production of Solar Fuel 391 9.8.3 Thermoelectric Energy 392 9.8.4 Piezoelectric Nanomaterials 394 9.8.5 Hydrogen Generation and Storage 394 9.8.6 Batteries 397 9.9 Nanotechnology in Enhancing the Fuel Efficiency 401 9.10 Chemical and Biosensors Using Nanomaterials (NMs) 401 9.10.1 Artificial Nose as Chemical/Biosensor 402 9.11 Nanotechnology in Agro Forestry 403 9.11.1 Precision Farming 403 9.11.2 Smart Delivery Systems 404 9.12 Defense Applications 404 9.12.1 Light Military Platforms 405 9.12.2 Nanotechnology for Camouflage/Stealth 405 9.12.3 Affordable Energy 407 9.12.4 Deadly Weapons 407 9.13 Nanotechnology in Space 408 9.13.1 Space Flight and Nanotechnology: Applications Under Development 408 9.14 Consumer Goods 409 9.14.1 Nanotextiles 409 9.14.2 Self-Cleaning 410 9.14.3 Antimicrobial Coatings on Textiles and Other Products 411 9.14.4 Cosmetics 412 9.15 Sport Goods 413 Review Questions 416 References 417 10 Toxicity and Environmental Issues 419 10.1 Introduction 419 10.1.1 Toxicity of Nanoparticles 421 10.2 Sources of Nanoparticles and Their Health Effects 422 10.2.1 Natural Sources of Nanoparticles 422 10.2.2 Anthropogenic Nanomaterials 426 10.3 Toxicology of Engineered Nanoparticles 431 10.3.1 Respiratory Tract Uptake and Clearance 431 10.3.2 Cellular Interaction with Nanoparticles 434 10.3.3 Nervous System Uptake of Nanoparticles 437 10.3.4 Nanoparticles Translocation to the Lymphatic Systems 438 10.3.5 Nanoparticles Translocation to the Circulatory System 438 10.3.6 Liver Spleen Kidneys Uptake of Nanoparticles 441 10.3.7 Gastrointestinal Tract Uptake and Clearance of Nanoparticles 441 10.3.8 Dermal Uptake of Nanoparticles 443 10.3.9 Nanoparticles Uptake via Injection 444 10.3.10 Nanoparticles Generation by Implants 444 10.4 Positive Health Effects of Nanoparticles 445 10.4.1 Nanoparticles as Antioxidants 445 10.4.2 Antimicrobial Activity 445 10.5 Environmental Sustainability 445 10.6 Safe Working with Nanomaterials 447 10.6.1 Safe Laboratory Practices in Handling Nanomaterials 448 10.6.2 Exposure Monitoring 449 10.7 Nanomaterial Waste Management 449 10.8 Gaps in Knowledge about Health Effects of Engineered Nanoparticles 451 10.9 Government Standards and Materials Safety Data Sheets 452 10.9.1 Control Banding 453 10.9.2 Hierarchy of Controls 453 10.9.3 Engineering Controls 453 10.9.4 Administrative Controls 454 10.9.5 Personal Protective Equipment 455 10.10 Risk Management 455 Review Questions 458 References 458 Index 463
Les mer
Provides a basic understanding of the complex and revolutionary disciplines of nanoscience and nanotechnology The fields of nanoscience and nanotechnology are growing exponentially as their potential to solve medical and environmental problems becomes clear. However, unless budding scientists remain educated and up to date on the most recent advances in nanoscience, this growth cannot continue. Essentials in Nanoscience and Nanotechnology combats this problem. Kumar and Kumbhat have assembled a comprehensive and concise text that both introduces the properties and reactions of molecules at the nanoscale and provides detailed information on recent advances, all while remaining comprehensible to someone only just setting foot in the field. Its broad coverage includes the following: The history of nanoscience and nanotechnologySynthesis, properties, and characterization of nanomaterialsSpecific nanomaterials such as nanocomposites, carbon-based nanomaterials, supramolecular nanomaterials, and nanocoatingsApplications in medicine, healthcare, drug discovery and delivery, electronics, defense, energy, and the environmentToxicity and ethics of nanotechnology use Students of all levels, young professionals, researchers, and anyone else wishing to gain an understanding of the principles of nanoscience and nanotechnology as well as their latest developments will find this book an invaluable resource.
Les mer

Produktdetaljer

ISBN
9781119096115
Publisert
2016-05-24
Utgiver
Vendor
John Wiley & Sons Inc
Vekt
821 gr
Høyde
241 mm
Bredde
163 mm
Dybde
31 mm
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
496

Om bidragsyterne

Narendra Kumar, Ph.D., is Former Director, DRDO, of MoD, India; carried out pioneering research in the development of advanced materials including nanomaterials and products based on them for various defense applications; and has over 100 research papers, 12 patents, and a book, Nanotechnology and Nanomaterials in the Treatment of Life-Threatening Diseases, to his credit. He is recipient of several national awards including Best Scientist DRDO Award and MRSI- Annual Award, 2010. Dr. Kumar is associated with American Chemical Society and Materials Research Society of India.

Sunita Kumbhat, Ph.D., is Professor of Chemistry at J. N. V. University, Jodhpur, India, teaching graduate and postgraduate courses on Analytical Chemistry; research fields include electrochemistry, sensor/biosensor, SPR technology, and nanomaterials. She has been Commonwealth Academic Staff Fellow 1994–1995, Oxford University; UGC-National Associate 1995–1997, BARC, Mumbai; and INSA-JSPS Fellow 2005, Kyushu University, Japan. Dr. Kumbhat is associated with International Society Electrochemistry, Bioelectrochemical Society, Chemical Research Society of India, and National Assessment and Accreditation Council, India.