Der Ton macht die Physik - das ist eine gelungene Mischung aus verstandlich dargestellter Wissenschaft und musikalischen Hintergrundinformationen, die die Welt des Musikhorens und -spielens mit allem Drum und Dran erlautert. Charles Taylor hat in vielen Vortragen, die er vor Kindern hielt, so viel Erfahrung gesammelt, dass er den Stoff "kinderleicht" fast spielerisch verpackt, und ist als emeritierter Physikprofessor doch Wissenschaftler genug, um ihn absolut systematisch und auf dem heutigen Stand der Forschung zu diskutieren. Angefangen von den Grundlagen der Physik des Schalls, der Horphysiologie und der Instrumentenkunde arbeitet er sich uber die Entstehung und Verstarkung von musikalischen Tonen zu den einzelnen Instrumentengruppen vor. Diese werden dann der Reihe nach unter die Lupe genommen (Saiten-, Blas- und elektronische Instrumente). Schritt fur Schritt versteht der Leser immer besser, was hinter einem Mozartschen Klavierkonzert, einer Beethovensinfonie oder einem Schubertlied steht, weshalb Tonleitern zwar lastig, aber nichtsdestotrotz sinnvoll - vor allem fur Tasteninstrumente sind, warum das Gehirn das alles in Musikgenuss umsetzt und vieles mehr. Ein Kapitel uber Raumakustik vervollstandigt die detailreiche und oft witzige Darstellung.
Les mer
1 Einführung.- 2 Was ist Musik?.- 2.1 Einführung.- 2.2 Was ist Schall?.- 2.3 Schallwellen in festen Körpern und Flüssigkeiten.- 2.4 Wann ist Schall Musik?.- 2.5 Tonhöhe und Frequenz.- 2.6 Ultraschall.- 2.7 Reine Töne.- 2.8 Klanghölzer.- 2.9 Die erste Familie von Musikinstrumenten.- 2.10 Das Ohr.- 2.11 Der Hörbereich.- 2.12 Zurück zur Natur der Musik.- 2.13 Musik und Information.- 2.14 Informationsträger.- 2.15 Harmonie und Dissonanz.- 2.16 Schwebungen und Differenztöne.- 2.17 Psycho-akustische Komplikationen.- 2.18 Mehr über den Beitrag des Gehirns.- 2.19 Zusammenfassung.- 3 Prinzipielles über Instrumente.- 3.1 Einführung.- 3.2 Einen Ton erzeugen.- 3.3 Eigenfrequenzen.- 3.4 Einen Ton aufrechterhalten.- 3.5 Wie wird der Ton laut genug? Instrumente der ersten Familie.- 3.6 Wie wird der Ton laut genug? Instrumente der zweiten Familie.- 3.7 Nebenwirkungen des Gebrauchs von Kästen.- 3.8 Luftschwingungen in einer Röhre.- 3.9 Schneidentöne.- 3.10 Harmonische Oberschwingungen: Instrumente der dritten Familie.- 3.11 Rohrblattinstrumente.- 3.12 Die Analyse musikalischer Klänge.- 3.13 Warum erzeugen Rohrblattinstrumente so viele Obertöne.- 3.14 Wie nehmen wir Mischungen von Obertöne wahr?.- 3.15 Obertöne von Saiten.- 3.16 Saitenschwingungen aufrechterhalten.- 3.17 Ein zeitgenössisches mechanisches Instrument.- 3.18 Töne im Zeitverlauf.- 3.19 Die überragende Bedeutung des Einschwingvorgangs.- 3.20 Mehr über den Einschwingvorgang.- 3.21 Zusammenfassung.- 4 Sandmuster, Saiten und Sinfonien.- 4.1 Einführung.- 4.2 Schwingungsmuster von Platten.- 4.3 Schwingungsmuster von Luft in Hohlräumen.- 4.4 Der Korpus von Saiteninstrumenten.- 4.5 Streichinstrumente.- 4.6 Der Geigenbau.- 4.7 Wissenschaftliche Qualitätstests für Geigen.- 4.8 WissenschaftlicheQualitätstests: Musikinstrumente im Konzertsaal.- 4.9 Wölfe.- 4.10 Die Catgut Acoustical Society.- 4.11 Zupfinstrumente.- 4.12 Angerissene Saiten in Tasteninstrumenten.- 4.13 Angeschlagene Saiten in Tasteninstrumenten.- 4.14 Das Pianoforte.- 4.15 Der Klavieranschlag.- 4.16 Zusammenfassung.- 5 Technik, Trompeten und Töne.- 5.1 Einleitung.- 5.2 Was passiert am Ende einer Röhre?.- 5.3 Schwingungen in beidseitig offenen Röhren.- 5.4 Schwingungen in einer einseitig verschlossenen Röhre.- 5.5 Privilegierte Frequenzen.- 5.6 Schwingungen in konischen Röhren.- 5.7 Obertonspektren der Holzblasinstrumente.- 5.8 Schneidentoninstrumente.- 5.9 Windkapselinstrumente.- 5.10 Die Oboen-und die Klarinettenfamilie.- 5.11 Die Funktion der Tonlöcher.- 5.12 Die Schallabstrahlung.- 5.13 Schwingungen aufrechterhalten.- 5.14 Die Funktion der Klappen.- 5.15 Eine andere Sicht von Schwingungen in Röhren.- 5.16 Instrumente des Übergangs.- 5.17 Wie aus einer Röhre eine Trompete wird.- 5.18 Ventile und Züge.- 5.19 Obertonspektren der Blechblasinstrumente.- 5.20 Orgelpfeifen.- 5.21 Der Orgelmechanismus.- 5.22 Die Stimme.- 5.23 Zusammenfassung.- 6 Stimmungen, Synthesizer und Schallaufnahmen.- 6.1 Einführung.- 6.2 Sinn und Zweck von Tonleitern.- 6.3 Gleichschwebende Temperatur.- 6.4 Folgen des Temperierens.- 6.5 Elektronische Synthese.- 6.6 Analoge Synthese.- 6.7 Samplen.- 6.8 Digitale Techniken.- 6.9 Computer-Synthese.- 6.10 Digitale Synthesizer.- 6.11 Die Idee von MIDI.- 6.12 Warum überhaupt Synthesizer?.- 6.13 Mechanische Instrumente und ihre Nachfolger.- 6.14 Schlußbemerkung.- 7 Akustik, Ablenkung und Aufführungspraxis.- 7.1 Einführung.- 7.2 Jeder muß irgendwo sein.- 7.3 Lautstärke gegen Verständlichkeit.- 7.4 Die Forschungen von W. C. Sabine.- 7.5 Welche Nachhallzeitist,richtig‘?.- 7.6 Wo soll schalldämpfendes Material angebracht werden?.- 7.7 Streuung der Reflexionen.- 7.8 Nachteile von Reflexionen.- 7.9 Einige subjektive Probleme.- 7.10 Methoden akustischen Entwerfens.- 7.11 Nachbesserungen der Akustik.- 7.12 Symphony Hall, Birmingham.- 7.13 Lärm in Gebäuden.- 7.14 Schlußbemerkung.- A Holographische Interferometrie.- A.1 Einführung.- B Tonhöhe und Frequenz.- B.1 Einführung.- B.2 Notationssysteme.- B.3 Die Verhältnisse in der reinen diatonischen Tonleiter.- B.4 Der Gebrauch von Cents als Frequenzmaß.- C Danksagungen.- C.1 Bildnachweise.
Les mer
Springer Book Archives

Produktdetaljer

ISBN
9783322849991
Publisert
2012-01-28
Utgiver
Vendor
Springer-Verlag
Høyde
210 mm
Bredde
148 mm
Aldersnivå
Research, P, 06
Språk
Product language
Tysk
Format
Product format
Heftet

Forfatter
Oversetter

Om bidragsyterne

Em. Prof. Charles Taylor lehrte bis 1983 Physik an der University of Wales, Cardiff. Er hielt zahlreiche Vorlesungen, die sich an ein junges und allgemein interessiertes Publikum wendeten und zum Teil im Fernsehprogramm der BBC übertragen wurden.