This work presents a full generic approach to the detection and recognition of traffic signs. The approach is based on the latest computer vision methods for object detection, and on powerful methods for multiclass classification. The challenge was to robustly detect a set of different sign classes in real time, and to classify each detected sign into a large, extensible set of classes. To address this challenge, several state-of-the-art methods were developed that can be used for different recognition problems. Following an introduction to the problems of traffic sign detection and categorization, the text focuses on the problem of detection, and presents recent developments in this field. The text then surveys a specific methodology for the problem of traffic sign categorization – Error-Correcting Output Codes – and presents several algorithms, performing experimental validation on a mobile mapping application. The work ends with a discussion on future research and continuing challenges.
Les mer
This work presents a full generic approach to the detection and recognition of traffic signs. Following an introduction to the problems of traffic sign detection and categorization, the text focuses on the problem of detection, and presents recent developments in this field.
Les mer
Introduction.- Background on Traffic Sign Detection and Recognition.- Traffic Sign Detection.- Traffic Sign Categorization.- Traffic Sign Detection and Recognition System.- Conclusions.
This work presents a full generic approach to the detection and recognition of traffic signs. The approach, originally developed for a mobile mapping application, is based on the latest computer vision methods for object detection, and on powerful methods for multiclass classification. The challenge was to robustly detect a set of different sign classes in real time, and to classify each detected sign into a large, extensible set of classes. To address this challenge, several state-of-the-art methods were developed that can be used for different recognition problems. Following an introduction to the problems of traffic sign detection and categorization, the text focuses on the problem of detection, and presents recent developments in this field. The text then surveys a specific methodology for the problem of traffic sign categorization – Error-Correcting Output Codes – and presents several algorithms, performing experimental validation on a mobile mapping application. The work ends with a discussion on future lines of research, and continuing challenges for traffic sign recognition.
Les mer
Presents a full generic approach to the detection and recognition of traffic signs, based on state-of-the-art computer vision methods for object detection, and on powerful methods for multiclass classification Surveys a specific methodology for the problem of traffic sign categorization: Error-Correcting Output Codes Includes experimental validation results performed on a mobile mapping application Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9781447122449
Publisert
2011-09-23
Utgiver
Vendor
Springer London Ltd
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet