<p>From the book reviews:</p>“The book brings substantial contributions to the field of SVMs from both theoretical and practical points of view. The concepts and methods are presented in a clear and accessible way, and the illustrative examples and applications provide a valuable source of inspiration for similar developments. … This book is of considerable value to researchers in the fields of machine learning, data mining, and statistical pattern recognition.” (L. State, Computing Reviews, August, 2014)

Support vector machines (SVM) have both a solid mathematical background and practical applications. This book focuses on the recent advances and applications of the SVM, such as image processing, medical practice, computer vision, and pattern recognition, machine learning, applied statistics, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications.
Les mer
Support vector machines (SVM) have both a solid mathematical background and practical applications. This book focuses on the recent advances and applications of the SVM, such as image processing, medical practice, computer vision, and pattern recognition, machine learning, applied statistics, and artificial intelligence.
Les mer
Augmented-SVM for gradient observations with application to learning multiple-attractor dynamics.- Multi-class Support Vector Machine.- Novel Inductive and Transductive Transfer Learning Approaches Based on Support Vector Learning.- Security Evaluation of Support Vector Machines in Adversarial Environments.- Application of SVMs to the Bag-of-features Model— A Kernel Perspective.- Support Vector Machines for Neuroimage Analysis: Interpretation from Discrimination.- Kernel Machines for Imbalanced Data Problem and the Use in Biomedical Applications.- Soft Biometrics from Face Images using Support Vector Machines.
Les mer
Support vector machines (SVM) have both a solid mathematical background and good performance in practical applications. This book focuses on the recent advances and applications of the SVM in different areas, such as image processing, medical practice, computer vision, pattern recognition, machine learning, applied statistics, business intelligence, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications, especially some recent advances.
Les mer
From the book reviews:“The book brings substantial contributions to the field of SVMs from both theoretical and practical points of view. The concepts and methods are presented in a clear and accessible way, and the illustrative examples and applications provide a valuable source of inspiration for similar developments. … This book is of considerable value to researchers in the fields of machine learning, data mining, and statistical pattern recognition.” (L. State, Computing Reviews, August, 2014)
Les mer
Focus on current developments in the field of Support Vector Machines Illustrates critical applications of support vector machines to important real world problems Provides critical review of the state-of-the-art techniques on SVM, such as domain transfer SVM, object recognition, soft biometrics, and biomedical applications Includes supplementary material: sn.pub/extras
Les mer

Produktdetaljer

ISBN
9783319022994
Publisert
2014-03-03
Utgiver
Vendor
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet

Om bidragsyterne

Yunqian Ma is Senior Principal Research Scientist at Honeywell Labs. Guodong Guo is an Assistant Professor at West Virginia University.