This book offers a comprehensive introduction to relational (SQL) and non-relational (NoSQL) databases. The authors thoroughly review the current state of database tools and techniques, and examine coming innovations. The book opens with a broad look at data management, including an overview of information systems and databases, and an explanation of contemporary database types:SQL and NoSQL databases, and their respective management systemsThe nature and uses of Big DataA high-level view of the organization of data management Data Modeling and Consistency Chapter-length treatment is afforded Data Modeling in both relational and graph databases, including enterprise-wide data architecture, and formulas for database design. Coverage of languages extends from an overview of operators, to SQL and and QBE (Query by Example), to integrity constraints and more. A full chapter probes the challenges of Ensuring Data Consistency, covering:Multi-User OperationTroubleshootingConsistency in Massive Distributed DataComparison of the ACID and BASE consistency models, and more System Architecture also gets from its own chapter, which explores Processing of Homogeneous and Heterogeneous Data; Storage and Access Structures; Multi-dimensional Data Structures and Parallel Processing with MapReduce, among other topics. Post-Relational and NoSQL Databases The chapter on post-relational databases discusses the limits of SQL – and what lies beyond, including Multi-Dimensional Databases, Knowledge Bases and and Fuzzy Databases. A final chapter covers NoSQL Databases, along withDevelopment of Non-Relational Technologies,Key-Value, Column-Family and Document StoresXML Databases and Graphic Databases, and more The book includes more than 100 tables, examples and illustrations, and each chapter offers a list of resources for further reading. SQL & NoSQL Databases conveys the strengths and weaknesses of relational and non-relational approaches, and shows how to undertake development for big data applications. The book benefits readers including students and practitioners working across the broad field of applied information technology.This textbook has been recommended and developed for university courses in Germany, Austria and Switzerland.
Les mer
Data Management.- Data Modeling.- Database Languages.- Ensuring Data Consistency.- System Architecture.- Post-Relational Databases.- NoSQL Databases.
This book introduces readers to the field of relational (SQL) and non-relational (NoSQL) databases. The main topics covered are data management, data modeling, query and manipulation languages, consistency, privacy and security, system architectures and multi-user operation. The book also provides an overview of post-relational and non-relational database systems. In addition to classic concepts, important aspects of NoSQL databases are discussed, such as map / reduce, distribution options (fragments, replication), and the CAP theorem (Consistency, Availability, and Partition tolerance). The book will benefit students looking for an introduction to the area of SQL and NoSQL databases, as well as practitioners, helping them better understand the strengths and weaknesses of relational and non-relational approaches and developments in connection with big data applications. Content Data Management - Data Modeling - Database Languages - Ensuring Data Consistency - System Architecture - Post-Relational Databases - NoSQL DatabasesThe authors Andreas Meier is a former member of the Faculty of Economics and Social Science and was a Professor of Information Technology at the University of Fribourg. He specializes in electronic business, electronic government, and information management. He is member of the GI (Gesellschaft für Informatik), IEEE Computer Society, and ACM.Michael Kaufmann is a Professor of Data Science and Big Data at the School of Information Technology, Lucerne University of Applied Sciences and Arts. He is also the coordinator of the university’s Data Intelligence research team, which develops and studies methods and technologies for intelligent data management.  
Les mer
Explores relational (SQL) and non-relational (NoSQL) databases Covers database management, modeling, languages, consistency, architecture and more Extensively illustrated with more than 100 tables, examples and illustrations
Les mer

Produktdetaljer

ISBN
9783658245481
Publisert
2019-07-16
Utgiver
Vendor
Springer Vieweg
Høyde
240 mm
Bredde
168 mm
Aldersnivå
Upper undergraduate, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Orginaltittel
SQL- & NoSQL-Datenbanken

Om bidragsyterne

Andreas Meier is a former member of the Faculty of Economics and Social Science and was a professor of Information Technology at the University of Fribourg. He specializes in electronic business, electronic government, and information management. He is member of the GI (Gesellschaft für Informatik), IEEE Computer Society, and ACM. After studying music in Vienna, he graduated with a degree in mathematics at the Federal Institute of Technology (ETH) in Zurich, studied his doctorate, and qualified as a university lecture at the Institute of Computer Science. He was a systems engineer at the IBM research lab in San José, California, director of an international bank, and a member of the executive board of an insurance company. 

Michael Kaufmann is a Professor of Data Science and Big Data at the School of Information Technology, Lucerne University of Applied Sciences and Arts.  He is also the coordinator of the university´s DataIntelligence research team, which develops and studies methods and technologies for intelligent data management. Michael Kaufmann studied computer science, law and psychology at the University of Fribourg. With extra-occupational doctoral studies, he received his Ph.D. in computer science on the topic of inductive fuzzy classification in marketing analytics. He worked at PostFinance as a data warehouse poweruser in corporate development; Later on at Mobiliar Insurance as a data architect in the enterprise architecture unit; and as a business analyst at FIVE Informatik AG, where he initiated and led a research project and started teaching as a part time lecturer at Kalaidos University of Applied Science. Since 2014 he has been working at the Lucerne University of Applied Sciences and Arts in teaching and research as a lecturer for databases, where he founded and successfully funded the research team data intelligence.