Computer vision has been successful in several important applications recently. Vision techniques can now be used to build very good models of buildings from pictures quickly and easily, to overlay operation planning data on a neuros- geon’s view of a patient, and to recognise some of the gestures a user makes to a computer. Object recognition remains a very di cult problem, however. The key questions to understand in recognition seem to be: (1) how objects should be represented and (2) how to manage the line of reasoning that stretches from image data to object identity. An important part of the process of recognition { perhaps, almost all of it { involves assembling bits of image information into helpful groups. There is a wide variety of possible criteria by which these groups could be established { a set of edge points that has a symmetry could be one useful group; others might be a collection of pixels shaded in a particular way, or a set of pixels with coherent colour or texture. Discussing this process of grouping requires a detailed understanding of the relationship between what is seen in the image and what is actually out there in the world.
Les mer
An important part of the process of recognition { perhaps, almost all of it { involves assembling bits of image information into helpful groups. There is a wide variety of possible criteria by which these groups could be established { a set of edge points that has a symmetry could be one useful group;
Les mer
An Empirical-Statistical Agenda for Recognition.- A Formal-Physical Agenda for Recognition.- Shape.- Shape Models and Object Recognition.- Order Structure, Correspondence, and Shape Based Categories.- Quasi-Invariant Parameterisations and Their Applications in Computer Vision.- Shading.- Representations for Recognition Under Variable Illumination.- Shadows, Shading, and Projective Ambiguity.- Grouping.- Grouping in the Normalized Cut Framework.- Geometric Grouping of Repeated Elements within Images.- Constrained Symmetry for Change Detection.- Grouping Based on Coupled Diffusion Maps.- Representation and Recognition.- Integrating Geometric and Photometric Information for Image Retrieval.- Towards the Integration of Geometric and Appearance-Based Object Recognition.- Recognizing Objects Using Color-Annotated Adjacency Graphs.- A Cooperating Strategy for Objects Recognition.- Statistics, Learning and Recognition.- Model Selection for Two View Geometry:A Review.- Finding Objects by Grouping Primitives.- Object Recognition with Gradient-Based Learning.
Les mer
Springer Book Archives
Springer Book Archives
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783540667223
Publisert
1999-11-03
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
234 mm
Bredde
156 mm
Aldersnivå
Research, UU, UP, P, 05, 06
Språk
Product language
Engelsk
Format
Product format
Heftet