The collation of large electronic databases of scienti?c and commercial infor- tion has led to a dramatic growth of interest in methods for discovering struc- res in such databases. These methods often go under the general name of data mining. One important subdiscipline within data mining is concerned with the identi?cation and detection of anomalous, interesting, unusual, or valuable - cords or groups of records, which we call patterns. Familiar examples are the detection of fraud in credit-card transactions, of particular coincident purchases in supermarket transactions, of important nucleotide sequences in gene sequence analysis, and of characteristic traces in EEG records. Tools for the detection of such patterns have been developed within the data mining community, but also within other research communities, typically without an awareness that the - sic problem was common to many disciplines. This is not unreasonable: each of these disciplines has a large literature of its own, and a literature which is growing rapidly. Keeping up with any one of these is di?cult enough, let alone keeping up with others as well, which may in any case be couched in an - familiar technical language. But, of course, this means that opportunities are being lost, discoveries relating to the common problem made in one area are not transferred to the other area, and breakthroughs and problem solutions are being rediscovered, or not discovered for a long time, meaning that e?ort is being wasted and opportunities may be lost.
Les mer
Tools for the detection of such patterns have been developed within the data mining community, but also within other research communities, typically without an awareness that the - sic problem was common to many disciplines.
Les mer
General Issues.- Pattern Detection and Discovery.- Detecting Interesting Instances.- Complex Data: Mining Using Patterns.- Determining Hit Rate in Pattern Search.- An Unsupervised Algorithm for Segmenting Categorical Timeseries into Episodes.- If You Can’t See the Pattern, Is It There?.- Association Rules.- Dataset Filtering Techniques in Constraint-Based Frequent Pattern Mining.- Concise Representations of Association Rules.- Constraint-Based Discovery and Inductive Queries: Application to Association Rule Mining.- Relational Association Rules: Getting Warmer.- Text and Web Mining.- Mining Text Data: Special Features and Patterns.- Modelling and Incorporating Background Knowledge in theWeb Mining Process.- Modeling Information in Textual Data Combining Labeled and Unlabeled Data.- Discovery of Frequent Word Sequences in Text.- Applications.- Pattern Detection and Discovery: The Case of Music Data Mining.- Discovery of Core Episodes from Sequences.- Patterns of Dependencies in Dynamic Multivariate Data.
Les mer
Springer Book Archives
Springer Book Archives
Includes supplementary material: sn.pub/extras
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783540441489
Publisert
2002-09-04
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, UU, UP, P, 05, 06
Språk
Product language
Engelsk
Format
Product format
Heftet