Motivated learning is an emerging research field in artificial intelligence and cognitive modelling. Computational models of motivation extend reinforcement learning to adaptive, multitask learning in complex, dynamic environments – the goal being to understand how machines can develop new skills and achieve goals that were not predefined by human engineers. In particular, this book describes how motivated reinforcement learning agents can be used in computer games for the design of non-player characters that can adapt their behaviour in response to unexpected changes in their environment.

This book covers the design, application and evaluation of computational models of motivation in reinforcement learning. The authors start with overviews of motivation and reinforcement learning, then describe models for motivated reinforcement learning. The performance of these models is demonstrated by applications in simulated game scenarios and a live, open-ended virtual world.

Researchers in artificial intelligence, machine learning and artificial life will benefit from this book, as will practitioners working on complex, dynamic systems – in particular multiuser, online games.

Les mer
This book covers the design, application and evaluation of computational models of motivation in reinforcement learning. The performance of these models is demonstrated by applications in simulated game scenarios and a live, open-ended, virtual world.
Les mer
Non-Player Characters and Reinforcement Learning.- Non-Player Characters in Multiuser Games.- Motivation in Natural and Artificial Agents.- Towards Motivated Reinforcement Learning.- Comparing the Behaviour of Learning Agents.- Developing Curious Characters Using Motivated Reinforcement Learning.- Curiosity, Motivation and Attention Focus.- Motivated Reinforcement Learning Agents.- Curious Characters in Games.- Curious Characters for Multiuser Games.- Curious Characters for Games in Complex, Dynamic Environments.- Curious Characters for Games in Second Life.- Future.- Towards the Future.
Les mer
Motivated reinforcement learning agents are applied as a novel approach to designing dynamic, adaptive characters for multiuser, online games Includes supplementary material: sn.pub/extras
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783540891864
Publisert
2009-05-27
Utgiver
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG; Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet