<p>From the reviews:</p>
<p>"This is a useful book on machine learning for cyber security applications. It will be helpful to researchers and graduate students who are looking for an introduction to a specific topic in the field. All of the topics covered are well researched. The book consists of 12 chapters, grouped into four parts." (Imad H. Elhajj, ACM Computing Reviews, October, 2009)</p>

Many networked computer systems are far too vulnerable to cyber attacks that can inhibit their functioning, corrupt important data, or expose private information. Not surprisingly, the field of cyber-based systems is a fertile ground where many tasks can be formulated as learning problems and approached in terms of machine learning algorithms. This book contains original materials by leading researchers in the area and covers applications of different machine learning methods in the reliability, security, performance, and privacy issues of cyber space. It enables readers to discover what types of learning methods are at their disposal, summarizing the state-of-the-practice in this significant area, and giving a classification of existing work. Those working in the field of cyber-based systems, including industrial managers, researchers, engineers, and graduate and senior undergraduate students will find this an indispensable guide in creating systems resistant to and tolerant of cyber attacks.
Les mer
In cyber-based systems, tasks can be formulated as learning problems and approached as machine-learning algorithms. This book covers applications of machine-learning methods in reliability, security, performance and privacy issues in cyber space.
Les mer
Cyber System.- Cyber-Physical Systems: A New Frontier.- Security.- Misleading Learners: Co-opting Your Spam Filter.- Survey of Machine Learning Methods for Database Security.- Identifying Threats Using Graph-based Anomaly Detection.- On the Performance of Online Learning Methods for Detecting Malicious Executables.- Efficient Mining and Detection of Sequential Intrusion Patterns for Network Intrusion Detection Systems.- A Non-Intrusive Approach to Enhance Legacy Embedded Control Systems with Cyber Protection Features.- Image Encryption and Chaotic Cellular Neural Network.- Privacy.- From Data Privacy to Location Privacy.- Privacy Preserving Nearest Neighbor Search.- Reliability.- High-Confidence Compositional Reliability Assessment of SOA-Based Systems Using Machine Learning Techniques.- Model, Properties, and Applications of Context-Aware Web Services.
Les mer
Many networked computer systems are far too vulnerable to cyber attacks that can inhibit their functioning, corrupt important data, or expose private information. Not surprisingly, the field of cyber-based systems turns out to be a fertile ground where many tasks can be formulated as learning problems and approached in terms of machine learning algorithms. This book contains original materials by leading researchers in the area and covers applications of different machine learning methods in the security, privacy, and reliability issues of cyber space. It enables readers to discover what types of learning methods are at their disposal, summarizing the state of the practice in this important area, and giving a classification of existing work. Specific features include the following: A survey of various approaches using machine learning/data mining techniques to enhance the traditional security mechanisms of databases A discussion of detection of SQL Injection attacks and anomaly detection for defending against insider threats An approach to detecting anomalies in a graph-based representation of the data collected during the monitoring of cyber and other infrastructures An empirical study of seven online-learning methods on the task of detecting malicious executables A novel network intrusion detection framework for mining and detecting sequential intrusion patterns A solution for extending the capabilities of existing systems while simultaneously maintaining the stability of the current systems An image encryption algorithm based on a chaotic cellular neural network to deal with information security and assurance An overview of data privacy research, examining the achievements, challenges and opportunities while pinpointing individual research efforts on the grand map of data privacy protection An algorithm based on secure multiparty computation primitives to compute the nearest neighbors of records in horizontally distributed data An approach for assessing the reliability of SOA-based systems using AI reasoning techniques The models, properties, and applications of context-aware Web services, including an ontology-based context model to enable formal description and acquisition of contextual information pertaining to service requestors and services Those working in the field of cyber-based systems, including industrial managers, researchers, engineers, and graduate and senior undergraduate students will find this an indispensable guide in creating systems resistant to and tolerant of cyber attacks.
Les mer
Provides the reader with an overview of machine learning methods Demonstrates how machine learning is used to deal with the security, reliability, performance, and privacy of cyber-based systems Presents the state of the practice in machine learning and cyber systems and identifies further efforts needed to produce fruitful results
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9781441946980
Publisert
2010-11-05
Utgiver
Vendor
Springer-Verlag New York Inc.
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet