This book constitutes the thoroughly refereed post-proceedings of the First PASCAL (pattern analysis, statistical modelling and computational learning) Machine Learning Challenges Workshop, MLCW 2005, held in Southampton, UK in April 2005. The 25 revised full papers presented were carefully selected during two rounds of reviewing and improvement from about 50 submissions. The papers reflect the concepts of three challenges dealt with in the workshop: finding an assessment base on the uncertainty of predictions using classical statistics, Bayesian inference, and statistical learning theory; the second challenge was to recognize objects from a number of visual object classes in realistic scenes; the third challenge of recognizing textual entailment addresses semantic analysis of language to form a generic framework for applied semantic inference in text understanding.
Les mer
Constitutes the refereed post-proceedings of the First PASCAL Machine Learning Challenges Workshop, MLCW 2005.
Evaluating Predictive Uncertainty Challenge.- Classification with Bayesian Neural Networks.- A Pragmatic Bayesian Approach to Predictive Uncertainty.- Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees.- Estimating Predictive Variances with Kernel Ridge Regression.- Competitive Associative Nets and Cross-Validation for Estimating Predictive Uncertainty on Regression Problems.- Lessons Learned in the Challenge: Making Predictions and Scoring Them.- The 2005 PASCAL Visual Object Classes Challenge.- The PASCAL Recognising Textual Entailment Challenge.- Using Bleu-like Algorithms for the Automatic Recognition of Entailment.- What Syntax Can Contribute in the Entailment Task.- Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment.- Textual Entailment Recognition Based on Dependency Analysis and WordNet.- Learning Textual Entailment on a Distance Feature Space.- An Inference Model for Semantic Entailment in Natural Language.- A Lexical Alignment Model for Probabilistic Textual Entailment.- Textual Entailment Recognition Using Inversion Transduction Grammars.- Evaluating Semantic Evaluations: How RTE Measures Up.- Partial Predicate Argument Structure Matching for Entailment Determination.- VENSES – A Linguistically-Based System for Semantic Evaluation.- Textual Entailment Recognition Using a Linguistically–Motivated Decision Tree Classifier.- Recognizing Textual Entailment Via Atomic Propositions.- Recognising Textual Entailment with Robust Logical Inference.- Applying COGEX to Recognize Textual Entailment.- Recognizing Textual Entailment: Is Word Similarity Enough?.
Les mer
Produktdetaljer
ISBN
9783540334279
Publisert
2006-05-11
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet