Withthe unprecedented rate at which data is being collected today in almostall elds of human endeavor, there is an emerging economic and scientic need to extract useful information from it. For example, many companies already have data-warehouses inthe terabyte range (e.g., FedEx, Walmart).The WorldWide Web has an estimated 800 millionweb-pages. Similarly,scienti c data is rea- ing gigantic proportions (e.g., NASA space missions, Human Genome Project). High-performance, scalable, parallel, and distributed computing is crucial for ensuring system scalabilityand interactivityas datasets continue to grow in size and complexity. Toaddress thisneedweorganizedtheworkshoponLarge-ScaleParallelKDD Systems, which was held in conjunction with the 5th ACM SIGKDD Inter- tional Conference on Knowledge Discovery and Data Mining, on August 15th, 1999, San Diego, California. The goal of this workshop was to bring researchers and practitioners together in a setting where they could discuss the design, - plementation,anddeploymentoflarge-scaleparallelknowledgediscovery (PKD) systems, which can manipulate data taken from very large enterprise or sci- tic databases, regardless of whether the data is located centrally or is globally distributed. Relevant topics identie d for the workshop included: { How to develop a rapid-response, scalable, and parallel knowledge discovery system that supports global organizations with terabytes of data.
Les mer
These are reviewed and revised of papers presented at a workshop held during KDD'99. The contributions presented cover all major t asks in data mining including parallel and distributed mining frameworks, associations, sequences, clustering, and classification.
Les mer
Large-Scale Parallel Data Mining.- Parallel and Distributed Data Mining: An Introduction.- Mining Frameworks.- The Integrated Delivery of Large-Scale Data Mining: The ACSys Data Mining Project.- A High Performance Implementation of the Data Space Transfer Protocol (DSTP).- Active Mining in a Distributed Setting.- Associations and Sequences.- Efficient Parallel Algorithms for Mining Associations.- Parallel Branch-and-Bound Graph Search for Correlated Association Rules.- Parallel Generalized Association Rule Mining on Large Scale PC Cluster.- Parallel Sequence Mining on Shared-Memory Machines.- Classification.- Parallel Predictor Generation.- Efficient Parallel Classification Using Dimensional Aggregates.- Learning Rules from Distributed Data.- Clustering.- Collective, Hierarchical Clustering from Distributed, Heterogeneous Data.- A Data-Clustering Algorithm on Distributed Memory Multiprocessors.
Les mer
Springer Book Archives
Springer Book Archives
Includes supplementary material: sn.pub/extras
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783540671947
Publisert
2000-02-23
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
233 mm
Bredde
155 mm
Aldersnivå
Research, UP, P, 05, 06
Språk
Product language
Engelsk
Format
Product format
Heftet