<i></i><p><i>From the reviews:</i></p><p><i><i>"This book is an excellent reference for researchers in the field, as well as students interested in this research area. The presentation of applications makes it interesting to researchers from other fields </i><i>to study weighted automata. ... One of the main arguments in favor of this handbook is the completeness of its index table — usually a faulty section in such volumes. The chapters are globally well-written and self-contained, thus pleasant to read, and the efforts put to maintain consistency in vocabulary thorough the book are very appreciable."</i> (Michaël Cadilhac, The Book Review Column 43-3, 2012)</i></p><p><i>“The book presents a broad survey, theory and applications, of weighted automata, classical nondeterministic automata in which transitions carry weights. … The individual articles are written by well-known researchers in the field: they include extensive lists of references and many open problems. The book is valuable for both computer scientists and mathematicians (being interested in discrete structures).” (Cristian S. Calude, Zentralblatt MATH, Vol. 1200, 2011)</i></p>

The purpose of this Handbook is to highlight both theory and applications of weighted automata. Weighted finite automata are classical nondeterministic finite automata in which the transitions carry weights. These weights may model, e. g. , the cost involved when executing a transition, the amount of resources or time needed for this,or the probability or reliability of its successful execution. The behavior of weighted finite automata can then be considered as the function (suitably defined) associating with each word the weight of its execution. Clearly, weights can also be added to classical automata with infinite state sets like pushdown automata; this extension constitutes the general concept of weighted automata. To illustrate the diversity of weighted automata, let us consider the following scenarios. Assume that a quantitative system is modeled by a classical automaton in which the transitions carry as weights the amount of resources needed for their execution. Then the amount of resources needed for a path in this weighted automaton is obtained simply as the sum of the weights of its transitions. Given a word, we might be interested in the minimal amount of resources needed for its execution, i. e. , for the successful paths realizing the given word. In this example, we could also replace the “resources” by “profit” and then be interested in the maximal profit realized, correspondingly, by a given word.
Les mer
The purpose of this Handbook is to highlight both theory and applications of weighted automata. Weighted finite automata are classical nondeterministic finite automata in which the transitions carry weights.
Les mer
Foundations.- Semirings and Formal Power Series.- Fixed Point Theory.- Concepts of Weighted Recognizability.- Finite Automata.- Rational and Recognisable Power Series.- Weighted Automata and Weighted Logics.- Weighted Automata Algorithms.- Weighted Discrete Structures.- Algebraic Systems and Pushdown Automata.- Lindenmayer Systems.- Weighted Tree Automata and Tree Transducers.- Traces, Series-Parallel Posets, and Pictures: A Weighted Study.- Applications.- Digital Image Compression.- Fuzzy Languages.- Model Checking Linear-Time Properties of Probabilistic Systems.- Applications of Weighted Automata in Natural Language Processing.
Les mer
Includes supplementary material: sn.pub/extras
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783642014918
Publisert
2009-09-28
Utgiver
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG; Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, UP, 05
Språk
Product language
Engelsk
Format
Product format
Innbundet