<p>From the reviews:</p><p>“The papers in this collection apply the methods elaborated in classical and algebraic graph theory to analyze patterns in various contexts. … the book will be easy for a researcher well versed in the theoretical fundamentals of the presented methods. … the editors have been able to structure the contents in an effective and interesting way. Therefore, I can recommend this volume as a useful reference for specialists in the field.” (Piotr Cholda, Computing Reviews, November, 2013)</p>
Graph Embedding for Pattern Recognition covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.
Les mer
This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces.
Les mer
Multilevel Analysis of Attributed Graphs for Explicit Graph Embedding in Vector Spaces.- Feature Grouping and Selection over an Undirected Graph.- Median Graph Computation by Means of Graph Embedding into Vector Spaces.- Patch Alignment for Graph Embedding.- Feature Subspace Transformations for Enhancing K-Means Clustering.- Learning with ℓ1-Graph for High Dimensional Data Analysis.- Graph-Embedding Discriminant Analysis on Riemannian Manifolds for Visual Recognition.- A Flexible and Effective Linearization Method for Subspace Learning.- A Multi-Graph Spectral Approach for Mining Multi-Source Anomalies.- Graph Embedding for Speaker Recognition.
Les mer
Graph Embedding for Pattern Analysis covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.
Les mer
From the reviews:“The papers in this collection apply the methods elaborated in classical and algebraic graph theory to analyze patterns in various contexts. … the book will be easy for a researcher well versed in the theoretical fundamentals of the presented methods. … the editors have been able to structure the contents in an effective and interesting way. Therefore, I can recommend this volume as a useful reference for specialists in the field.” (Piotr Cholda, Computing Reviews, November, 2013)
Les mer
Covers theoretical analysis and real-world applications for graph embedding Examines subspace analysis with L1 graph Describes graph-based inference on Riemannian manifolds for visual analysis Includes supplementary material: sn.pub/extras
Les mer
Produktdetaljer
ISBN
9781461444565
Publisert
2012-11-17
Utgiver
Vendor
Springer-Verlag New York Inc.
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Om bidragsyterne
Dr. Yun Fu is a professor at the State University of New York at BuffaloDr. Yunqian Ma is a senior principal research scientist of Honeywell Labs at the Honeywell International Inc.