"This treasure-trove of a book covers the important topic of performance evaluation of machine learning algorithms in a very comprehensive and lucid fashion. As Japkowicz and Shah point out, performance evaluation is too often a formulaic affair in machine learning, with scant appreciation of the appropriateness of the evaluation methods used or the interpretation of the results obtained. This book makes significant steps in rectifying this situation by providing a reasoned catalogue of evaluation measures and methods, written specifically for a machine learning audience and accompanied by concrete machine learning examples and implementations in R. This is truly a book to be savoured by machine learning professionals, and required reading for Ph.D students." Peter A. Flach, University of Bristol
"This book has the merit of organizing most of the material about the evaluation of learning algorithms into a homogeneous description, covering both theoretical aspects and pragmatic issues. It is a useful resource for researchers in machine learning, and provides adequate material for graduate courses in machine learning and related fields." Corrado Mencar, Computing Reviews