Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques.  New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available.

This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.

Les mer

This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms.

Les mer
Introduction to Optimization.- Classical Optimization Algorithms.- Evolutionary and Swarm Optimization.- Introduction to Machine Learning.- Data-Driven Surrogate-Assisted Evolutionary Optimization.- Multi-Surrogate-Assisted Single-Objective Optimization.- Surrogate-Assisted Multi-Objective Evolutionary Optimization.
Les mer

Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques.  New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available.

This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.

Les mer
Includes a brief introduction to mathematical programming, metaheuristic algorithms, and machine learning techniques Presents a systematic description of most recent research advances in data-driven evolutionary optimization, including surrogate-assisted single-, multi-, and many-objective optimization Introduces various intuitive and mathematical surrogate management strategies, such as the trust region method and acquisition functions in Bayesian optimization Provides applications of data-driven optimization to engineering design, automation of process industry, health care, and automated machine learning
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783030746421
Publisert
2022-06-30
Utgiver
Vendor
Springer Nature Switzerland AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet