This book explores boundary value problems for Riemann-Liouville fractional dynamic equations on arbitrary time scales as well as the shifting problem on the whole time scale. The author includes an introductory overview of fractional dynamic calculus on time scales. The book also introduces the Laplace transform on arbitrary time scales, including the bilateral Laplace transform, the Laplace transform of power series, and a deduction of an inverse formula. The author then discusses the generalized convolutions of functions on arbitrary time scales and the shifting problem for existence of solutions. The book moves on to cover boundary value problems and initial boundary value problems for some classes Riemann-Liouville fractional dynamic equations.

Les mer

This book explores boundary value problems for Riemann-Liouville fractional dynamic equations on arbitrary time scales as well as the shifting problem on the whole time scale.

The Laplace Transform on Time Scales.- Generalized Convolutions on Time Scales.- Elements of Fractional Dynamic Calculus on Time Scales.- Boundary Value Problems for Riemann-Liouville Fractional Dynamic Equations.

Les mer
This book explores boundary value problems for Riemann-Liouville fractional dynamic equations on arbitrary time scales as well as the shifting problem on the whole time scale. The author includes an introductory overview of fractional dynamic calculus on time scales. The book also introduces the Laplace transform on arbitrary time scales, including the bilateral Laplace transform, the Laplace transform of power series, and a deduction of an inverse formula. The author then discusses the generalized convolutions of functions on arbitrary time scales and the shifting problem for existence of solutions. The book moves on to cover boundary value problems and initial boundary value problems for some classes Riemann-Liouville fractional dynamic equations.
In addition, this book: 
  • Explains the topic for a wide audience including physicists, engineers, biologists, and students of various disciplines
  • Presents a solution technique applicable to other problems for fractional dynamic equations on arbitrary time scales
  • Provides an introduction to boundary value problems for fractional dynamic equations on arbitrary time scales
Les mer
Explains the topic for a wide audience including physicists, engineers, biologists, and students of various disciplines Presents a solution technique applicable to other problems for fractional dynamic equations on arbitrary time scales Provides an introduction to boundary value problems for fractional dynamic equations on arbitrary time scales
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783031381959
Publisert
2023-08-17
Utgiver
Springer International Publishing AG; Springer International Publishing AG
Høyde
240 mm
Bredde
168 mm
Aldersnivå
Professional/practitioner, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
163

Forfatter

Om bidragsyterne

Svetlin G. Georgiev, Ph.D., is an Assistant Professor in the Faculty of Mathematics and Informatics at Sofia University. He was previously affiliated with Sorbonne University. He is the author of several books, including Real Quaternion Calculus Handbook, Theory of Distributions, Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales, Fuzzy Dynamic Equations, Dynamic Inclusions and Optimal Control Problems on Time Scales, and Functional Dynamic Equations on Time Scales, published by Springer Nature. His current research interests include harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, and dynamic calculus on time scales.