This book provides a new design and evaluation framework based on slope Stochastic Dynamics theory to probabilistic seismic performance for slope engineering. For the seismic dynamic stability safety of slope, it shifts from deterministic seismic dynamic analysis to quantitative analysis based on nonlinear stochastic dynamics, that is, from qualitative to the description of stochasticity of earthquake excitation that meet the needs in related design specification and establish a performance standard. In the nonlinear dynamic time history analysis of slope subjected to seismic ground motion, the term “randomness” is used to express the uncertainty in the intensity and frequency of earthquake excitation for slope engineering dynamic seismic performance. It mainly includes seismic design fortification standard, corresponding ground motion excitation, performance index threshold, and slope deterministic nonlinear seismic dynamic response. Even more than that, the seismic dynamic large deformation approaches of the whole process and comprehensive analysis for flow analysis after slope instability failure. Eventually, the probabilistic seismic dynamic performance of the slope engineering will be characterized by nonlinear dynamic reliability.
Les mer
This book provides a new design and evaluation framework based on slope Stochastic Dynamics theory to probabilistic seismic performance for slope engineering.
Introduction.- Terms and Notations.- Performance-based Seismic Design of Slope.- Seismic Ground Motion Excitations for Slope Seismic Dynamic Performance Design and Assessment.- Deterministic Analysis Methods for Slope Seismic Dynamic Response.- Probabilistic Performance-based Seismic Design and Assessment for Slope Engineering.- Case Study.- Conclusions and Prospects.
Les mer
This book provides a new design and evaluation framework based on slope Stochastic Dynamics theory to probabilistic seismic performance for slope engineering. For the seismic dynamic stability safety of slope, it shifts from deterministic seismic dynamic analysis to quantitative analysis based on nonlinear stochastic dynamics, that is, from qualitative to the description of stochasticity of earthquake excitation that meet the needs in related design specification and establish a performance standard. In the nonlinear dynamic time history analysis of slope subjected to seismic ground motion, the term “randomness” is used to express the uncertainty in the intensity and frequency of earthquake excitation for slope engineering dynamic seismic performance. It mainly includes seismic design fortification standard, corresponding ground motion excitation, performance index threshold, and slope deterministic nonlinear seismic dynamic response. Even more than that, the seismic dynamic large deformation approaches of the whole process and comprehensive analysis for flow analysis after slope instability failure. Eventually, the probabilistic seismic dynamic performance of the slope engineering will be characterized by nonlinear dynamic reliability.
Les mer
Establishes a new design and evaluation framework on basis of slope Stochastic Dynamics theory Proposes fortification standards for slope seismic performance related to performance analysis Provides a category of external environmental excitation meeting the seismological/geological conditions of slope site
Les mer
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Produktdetaljer
ISBN
9789811991820
Publisert
2023-03-17
Utgiver
Vendor
Springer Verlag, Singapore
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Om bidragsyterne
Prof. Yu Huang, born in 1973, received his Ph.D. in geotechnical engineering from Tongji University, Shanghai, China. He is now a “Distinguished Professor of Changjiang Scholars of the Ministry of Education” in geological engineering in the College of Civil Engineering at Tongji University. Professor Huang’s primary research area includes earthquake geotechnical engineering, geologic disasters, computational geomechanics, foundation engineering, and environmental geology. He has authored more than 150 papers in international refereed journals. As first author, he has written four monographs entitled “Slope Stochastic Dynamics”, “Geo-disaster Modeling and Analysis: An SPH-based Approach”, “Hazard Analysis of Seismic Soil Liquefaction”, and “Social Infrastructure Maintenance Notebook” published by Springer. He now serves on the editorial board for Engineering Geology, Bulletin of Engineering Geology and the Environment, Geotechnical Research, and Geoenvironmental Disasters. Professor Huang received the National Science Fund for Distinguished Young Scholars from the National Natural Science Foundation of China for his research on geological disasters triggered by earthquakes.Co-author Min Xiong, born in 1986, received his Ph.D. from Tongji University under the supervision of Prof. Yu Huang. He received his bachelor’s and master’s degrees in civil engineering at Three Gorges University. He is currently working at Tongji University as a post-doctoral research fellow.
Co-author Hongqiang Hu, born in 1993, received his Ph.D. from Tongji University under the guidance of Prof. Yu Huang. He received his bachelor’s degree in geological engineering at Chang’an University. He is currently working at Zhejiang University and the Architectural Design & Research Institute of Zhejiang University Co., Ltd. as a post-doctoral research fellow.