This book presents the basic concepts of software reliability growth models (SRGMs), ranging from fundamental to advanced level. It discusses SRGM based on the non-homogeneous Poisson process (NHPP), which has been a quite successful tool in practical software reliability engineering. These models consider the debugging process as a counting process characterized by its mean value function. Model parameters have been estimated by using either the maximum likelihood method or regression. NHPP SRGMs based on inverse Weibull, generalized inverse Weibull, extended inverse Weibull, generalized extended inverse Weibull, and delayed S-shaped have been focused upon.  Review of literature on SRGM has been included from the scratch to recent developments, applicable in artificial neural networks, machine learning, artificial intelligence, data-driven approaches, fault-detection, fault-correction processes, and also in random environmental conditions. This book is designed for practitioners and researchers at all levels of competency, and also targets groups who need information on software reliability engineering.
Les mer
1. Introduction to Software Reliability Models.- 2. Literature Survey in Software Reliability Growth Models.- 3. NHPP Software Reliability Growth Models.- 4. Inverse Weibull Software Reliability Growth Model.- 5. Generalized Inverse Weibull Software Reliability Growth Model.- 6. Extended Inverse Weibull Software Reliability Growth Model.- 7. Generalized Extended Inverse Weibull Software Reliability Growth Model.- 8. Delayed S-Shaped SRGM with Time Dependent Fault Content Rate Function.- 9. Scope for Future Extension to SRGM.
Les mer
This book presents the basic concepts of software reliability growth models (SRGMs), ranging from fundamental to advanced level. It discusses SRGM based on the non-homogeneous Poisson process (NHPP), which has been a quite successful tool in practical software reliability engineering. These models consider the debugging process as a counting process characterized by its mean value function. Model parameters have been estimated by using either the maximum likelihood method or regression. NHPP SRGMs based on inverse Weibull, generalized inverse Weibull, extended inverse Weibull, generalized extended inverse Weibull, and delayed S-shaped have been focused upon.  Review of literature on SRGM has been included from the scratch to recent developments, applicable in artificial neural networks, machine learning, artificial intelligence, data-driven approaches, fault-detection, fault-correction processes, and also in random environmental conditions. This book is designed for practitioners and researchers at all levels of competency, and also targets groups who need information on software reliability engineering.
Les mer
Discusses the basic concepts of software reliability growth models Explains different non-homogeneous Poisson process of software reliability models Presents applications in artificial neural networks, machine learning, and artificial intelligence Appeals to practitioners, researchers, and students who need information on software reliability engineering
Les mer

Produktdetaljer

ISBN
9789811600272
Publisert
2022-02-27
Utgiver
Vendor
Springer Verlag, Singapore
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Graduate, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet

Om bidragsyterne

David D. Hanagal is Honorary Professor at Symbiosis Statistical Institute, Symbiosis International University, Pune, India. He was previously Professor at the Department of Statistics, Savitribai Phule Pune University, India. He is an elected fellow of the Royal Statistical Society, UK. He has authored three books and three book chapters and published over 130 research publications in leading international refereed journals. He has guided 9 Ph.D. students in different areas of statistics, namely reliability, survival analysis, frailty models, repair and replacement models, software reliability, and quality loss index. He also has worked as Visiting Professor at several universities in the USA, Germany, and Mexico, and delivered more than 100 invited talks in many national and international platforms of repute worldwide.
He is Editor-in-Chief, Associate Editor, and an editorial board member of several reputed national and international journals. He is the chairperson, the subject expert, and an advisory committee member on several UGC committees. He is a National Assessment and Accreditation Council (NAAC) Assessor from UGC. He is the subject expert (statistics) in board of studies committee of several universities. He is a governing council member, an executive council member, and a life member of several statistical societies, organizations, and associations. His research interests include statistical inference, selection problems, reliability, survival analysis, frailty models, Bayesian inference, stress–strength models, Monte–Carlo methods, MCMC algorithms, bootstrapping, censoring schemes, distribution theory, multivariate models, characterizations, repair and replacement models, software reliability, quality loss index, and nonparametric inference. With more than 40 years of teaching experience and more than 35 years of research experience, he is an expert on writing programs using SAS, R, MATLAB, MINITAB, SPSS, and SPLUS statistical packages.
Nileema N. Bhalerao is Assistant Professor at Fergusson College, Pune, India. With 20 years of teaching experience and 5 years of research experience, she is an expert on writing programs using several statistical packages. Her research interest includes software reliability models.