<p>From the reviews:</p>“The book is dedicated almost entirely to the analysis of the Ricci flow, viewed first as a heat type equation hence its consequences, and later from the more recent developments due to Perelman’s monotonicity formulas and the blow-up analysis of the flow which was made thus possible. … is very enjoyable for specialists and non-specialists (of curvature flows) alike.” (Alina Stancu, Zentralblatt MATH, Vol. 1214, 2011)
This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem.
Les mer
Focusing on Hamilton's Ricci flow, this volume begins with a detailed discussion of the required aspects of differential geometry. The discussion also includes existence and regularity theory, compactness theorems for Riemannian manifolds, and much more.
Les mer
1 Introduction.- 2 Background Material.- 3 Harmonic Mappings.- 4 Evolution of the Curvature.- 5 Short-Time Existence.- 6 Uhlenbeck’s Trick.- 7 The Weak Maximum Principle.- 8 Regularity and Long-Time Existence.- 9 The Compactness Theorem for Riemannian Manifolds.- 10 The F-Functional and Gradient Flows.- 11 The W-Functional and Local Noncollapsing.- 12 An Algebraic Identity for Curvature Operators.- 13 The Cone Construction of Böhm and Wilking.- 14 Preserving Positive Isotropic Curvature.- 15 The Final Argument
Les mer
This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem.
Les mer
A self contained presentation of the proof of the differentiable sphere theorem A presentation of the geometry of vector bundles in a form suitable for geometric PDE A discussion of the history of the sphere theorem and of future challenges Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Produktdetaljer
ISBN
9783642162855
Publisert
2010-11-25
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet