Dieses Buch bietet eine umfassende und aktuelle Darstellung des Themenbereichs "Numerische Lösung unrestringierter Optimierungsaufgaben mit differenzierbarer Zielfunktion", die über die bislang existierende Lehrbuchliteratur deutlich hinausgeht. Es wendet sich in erster Linie an Studierende der Mathematik, der Wirtschaftsmathematik und der Technomathematik in mittleren und höheren Semestern, sollte aber auch erfahrenen Mathematikern einen Zugang zur aktuellen Forschung und Anwendern einen Überblick über die vorhandenen Verfahren geben. Alle besprochenen Verfahren sind ausführlich motiviert und mit einer vollständigen Konvergenzanalyse versehen, und es werden zu allen konkreten Algorithmen Tabellen mit numerischen Resultaten angegeben. In Anhängen sind die benötigten Grundlagen aus der mehrdimensionalen Analysis und der linearen Algebra sowie Testbeispiele zusammengestellt. Abgerundet wird das Buch durch ca. 150 Aufgaben unterschiedlichen Umfangs und Schwierigkeitsgrades.
Les mer
Es wendet sich in erster Linie an Studierende der Mathematik, der Wirtschaftsmathematik und der Technomathematik in mittleren und höheren Semestern, sollte aber auch erfahrenen Mathematikern einen Zugang zur aktuellen Forschung und Anwendern einen Überblick über die vorhandenen Verfahren geben.
Les mer
1. Einführung.- 2. Optimalitätskriterien.- Aufgaben.- 3. Konvexe Funktionen.- Aufgaben.- 4. Ein allgemeines Abstiegsverfahren.- Aufgaben.- 5. Schrittweitenstrategien.- 5.1 Armijo-Regel.- 5.2 Wolfe-Powell-Schrittweitenstrategie.- 5.3 Strenge Wolfe-Powell-Schrittweitenstrategie.- Aufgaben.- 6. Schrittweitenalgorithmen.- 6.1 Armijo-Regel.- 6.2 Wolfe-Powell-Schrittweitenstrategie.- 6.3 Strenge Wolfe-Powell-Schrittweitenstrategie.- Aufgaben.- 7. Konvergenzraten und Charakterisierungen.- Aufgaben.- 8. Gradientenverfahren.- 8.1 Das Gradientenverfahren.- 8.2 Konvergenz bei quadratischer Zielfunktion.- 8.3 Gradientenähnliche Verfahren.- Aufgaben.- 9. Newton-Verfahren.- 9.1 Das lokale Newton-Verfahren.- 9.2 Ein globalisiertes Newton-Verfahren.- 9.3 Hinweise zur Implementation.- 9.4 Numerische Resultate.- Aufgaben.- 10. Inexakte Newton-Verfahren.- 10.1 Das lokale inexakte Newton-Verfahren.- 10.2 Ein globalisiertes inexaktes Newton-Verfahren.- 10.3 Hinweise zur Implementation.- 10.4 Numerische Resultate.- Aufgaben.- 11. Quasi-Newton-Verfahren.- 11.1 Herleitung einiger Quasi-Newton-Formeln.- 11.2 Lokale Konvergenz des PSB-Verfahrens.- 11.3 Lokale Konvergenz des BFGS-Verfahrens.- 11.4 Globalisierte Quasi-Newton-Verfahren.- 11.5 Konvergenz bei gleichmäßig konvexen Funktionen.- 11.6 Weitere Quasi-Newton-Formeln.- 11.7 Hinweise zur Implementation.- 11.8 Numerische Resultate.- Aufgaben.- 12. Limited Memory Quasi-Newton-Verfahren.- 12.1 Herleitung des Limited Memory BFGS-Verfahrens.- 12.2 Konvergenz bei gleichmäßig konvexen Funktionen.- 12.3 Hinweise zur Implementation.- 12.4 Numerische Resultate.- Aufgaben.- 13. CG-Verfahren.- 13.1 Das CG-Verfahren für lineare Gleichungssysteme.- 13.2 Das Fletcher-Reeves-Verfahren.- 13.3 Das Polak-Ribière-Verfahren.- 13.4 Ein modifiziertesPolak-Ribière-Verfahren.- 13.5 Weitere CG-Verfahren.- 13.6 Numerische Resultate.- Aufgaben.- 14. Trust-Region-Verfahren.- 14.1 Das Trust-Region-Teilproblem.- 14.2 Die KKT-Bedingungen.- 14.3 Eine exakte Penalty-Funktion.- 14.4 Zur Lösung des Trust-Region-Teilproblems.- 14.5 Trust-Region-Newton-Verfahren.- 14.6 Teilraum-Trust-Region-Newton-Verfahren.- 14.7 Inexakte Trust-Region-Newton-Verfahren.- 14.8 Trust-Region-Quasi-Newton-Verfahren.- 14.9 Numerische Resultate.- Aufgaben.- A. Grundlagen aus der mehrdimensionalen Analysis.- B. Grundlagen aus der linearen Algebra.- C. Testbeispiele.
Les mer
Dieses Buch bietet eine umfassende und aktuelle Darstellung des Themenbereichs "Numerische Lösung unrestringierter Opti- mierungsaufgaben mit differenzierbarer Zielfunktion", die über die bislang existierende Lehrbuchliteratur deutlich hinausgeht. Es wendet sich in erster Linie an Studierende der Mathematik, der Wirtschaftsmathematik und der Technomat- hematik in mittleren und höheren Semestern, sollte aber auch erfahrenen Mathematikern einen Zugang zur aktuellen For- schung und Anwendern einen Überblick über die vorhandenen Verfahren geben. Alle besprochenen Verfahren sind ausführ- lich motiviert und mit einer vollständigen Konvergenzanalyse versehen, und es werden zu allen konkreten Algorithmen Ta- bellen mit numerischen Resultaten angegeben. In Anhängen sind die benötigten Grundlagen aus der mehrdimensionalen Analysis und der linearen Algebra sowie Testbeispiele zusam- mengestellt. Abgerundet wird das Buch durch ca. 150 Aufgaben unterschiedlichen Umfangs und Schwierigkeitsgrades.
Les mer
Springer Book Archives
Umfassender, aktueller und deutlich über die existierende Lehrbuchliteratur hinausgehender Überblick zum Thema "Numerische Lösung unrestringierter Optimierungsaufgaben mit differenzierbarer Zielfunktion" Includes supplementary material: sn.pub/extras
Les mer
Produktdetaljer
ISBN
9783540662204
Publisert
1999-09-09
Utgiver
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG; Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Upper undergraduate, P, 06
Språk
Product language
Tysk
Format
Product format
Heftet