<p>From the reviews:</p><p>"This book provides reasonably good coverage of numerical methods that are important in statistical applications. ...but overall the text serves as a good introduction to computational statistics." - MATHEMATICAL REVIEWS</p><p>From the reviews of the second edition:</p><p>“The theory and equations are well defined and easy enough to read. … This book gives you all the details you need for choosing formulas and libraries when implementing Fourier Transforms. … this is a good book … .” (Cats and Dogs with Data, maryannedata.wordpress.com, July, 2013)</p><p>“The aim and scope of this edition is to provide upper level undergraduate students, graduate students and even researchers the understanding and working knowledge of different numerical methods. … The book is organized sequentially and is well structured. … The book can be served as a textbook and equally as a reference book. … the book will appeal to a broad interdisciplinary research community. It can also successfully be used as a reference book for practitioners, providing concrete examples, data and exercises of statistical applications.” (Technometrics, Vol. 53 (2), May, 2011)</p><p>“This is a comprehensive handbook for anyone with an interest in computational statistics, such as instructors, statisticians, modelers, data mining analysts, and software designers. For a reader with good working knowledge of numerical analysis, the book is useful for understanding the advantages and disadvantages of different numerical methods. … also suitable for students interested in refining their knowledge: a list of problems with gradually increasing difficulty is available, in addition to a list of very carefully chosen references (a real support for the reader).” (Dragos Calitoiu, Mathematical Reviews, Issue 2011 g)</p><p>“Numerical Analysis for Statisticians is a wonderful book. It provides most of the necessary background in calculusand enough algebra to conduct rigorous numerical analyses of statistical problems. … I simply enjoyed Numerical Analysis for Statisticians from beginning until end. … Numerical Analysis for Statisticians also is recommended for more senior researchers, and not only for building one or two courses on the bases of statistical computing. … an essential book to hand to graduate students as soon as they enter a statistics program.” (Christian Robert, Chance, Vol. 24 (4), 2011) </p>