“Readers will definitely enjoy this book, because all surveyed topics are rigorously exposed. Moreover, since the main prerequisites are provided, the book is essentially self-contained and easy to read. The authors have also included many illustrative pictures that ensure a good understanding of technical concepts and results. … this book is an excellent reference for researchers and graduate students in both pure and applied mathematics, as well as other disciplines.” (Nicolae Popovici, Mathematical Reviews, August, 2018)
1. Definitions and Examples.- 2. Scalarization.- 3. Approximation and Complexity.- 4. A Brief Review of Non-Convex Single-Objective Optimization.- 5. Multi-Objective Branch and Bound.- 6. Worst-Case Optimal Algorithms.- 7. Statistical Models Based Algorithms.- 8. Probabilistic Bounds in Multi-Objective Optimization.- 9. Visualization of a Set of Pareto Optimal Decisions.- 10. Multi-Objective Optimization Aided Visualization of Business Process Diagrams. –References.- Index.