This open access volume presents a novel computational framework for understanding how collections of excitable cells work. The key approach in the text is to model excitable tissue by representing the individual cells constituting the tissue. This is in stark contrast to the common approach where homogenization is used to develop models where the cells are not explicitly present. The approach allows for very detailed analysis of small collections of excitable cells, but computational challenges limit the applicability in the presence of large collections of cells.
Les mer
This open access volume presents a novel computational framework for understanding how collections of excitable cells work. The approach allows for very detailed analysis of small collections of excitable cells, but computational challenges limit the applicability in the presence of large collections of cells.
Les mer
Derivation of a cell-based mathematical model of excitable cells.- A cell-based model for ionic electrodiffusion in excitable tissue.- Modeling cardiac mechanics on a subcellular scale.- Operator splitting and finite difference schemes for solving the EMI model.- Solving the EMI equations using finite element methods.- Iterative solvers for EMI models.- Improving neural simulations with the EMI model.- Index.
Les mer
This open access volume presents a novel computational framework for understanding how collections of excitable cells work. The key approach in the text is to model excitable tissue by representing the individual cells constituting the tissue. This is in stark contrast to the common approach where homogenization is used to develop models where the cells are not explicitly present. The approach allows for very detailed analysis of small collections of excitable cells, but computational challenges limit the applicability in the presence of large collections of cells.
Les mer
This is a brief text that is accessible for a large audience with a background in computational mathematics The text introduces a state-of-the-art approach to simulation of excitable cells Software is available for all the models presented in the text
Les mer
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Les mer
Produktdetaljer
ISBN
9783030611569
Publisert
2020-10-31
Utgiver
Vendor
Springer Nature Switzerland AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Om bidragsyterne
Kent-Andre Mardal is a professor of mechanics at the University of Oslo and an adjunct research scientist at Simula Research Laboratory. He has published more than 90 scientific publications, including journal papers, two co-authored books and the co-edited the book about the FEniCS project, for which he was a core developer for many years. Research interests include computational modeling of various life science applications and robust, stable and accurate numerical schemes.Marie E. Rognes is a research professor at Simula Research Laboratory and a founding member of the Young Academy of Norway. She has over 50 scientific publications and has delivered numerous keynote addresses and invited talks, including a TEDx talk. Her research is primarily focused on mathematical and computational modelling of fluid flow in the brain, and this work has been partially funded by an ERC starting grant.