<p>Many of the results presented here are appearing in book form for the first time. (...) The writing style is clear. Needless to say, the level of mathematics is high and will no doubt tax the average mathematics and physics graduate student. For the devoted student, however, this book offers an excellent basis for a 1-year course on the subject. It is definitely recommended.</p>
<p><strong>JASA Reviews</strong></p>

Kolmogorov Equations for Stochastic PDEs gives an introduction to stochastic partial differential equations, such as reaction-diffusion, Burgers and 2D Navier-Stokes equations, perturbed by noise. It studies several properties of corresponding transition semigroups, such as Feller and strong Feller properties, irreducibility, existence and uniqueness of invariant measures. In addition, the transition semigroups are interpreted as generalized solutions of Kologorov equations.
Les mer
An introduction to stochastic partial differential equations, such as reaction-diffusion, Burgers and 2D Navier-Stokes equations, perturbed by noise. It studies several properties of corresponding transition semigroups, such as Feller and strong Feller properties, irreducibility, existence and uniqueness of invariant measures.
Les mer
1 Introduction and Preliminaries.- 1.1 Introduction.- 1.2 Preliminaries ix.- 2 Stochastic Perturbations of Linear Equations.- 2.1 Introduction.- 2.2 The stochastic convolution.- 2.3 The Ornstein—Uhlenbeck semigroup Rt.- 2.4 The case when Rt is strong Feller.- 2.5 Asymptotic behaviour of solutions, invariant measures.- 2.6 The transition semigroup in Lp(H, ?).- 2.7 Poincaré and log-Sobolev inequalities.- 2.8 Some complements.- 3 Stochastic Differential Equations with Lipschitz Nonlinearities.- 3.1 Introduction and setting of the problem.- 3.2 Existence, uniqueness and approximation.- 3.3 The transition semigroup.- 3.4 Invariant measure v.- 3.5 The transition semigroup in L2 (H, v).- 3.6 The integration by parts formula and its consequences.- 3.7 Comparison of v with a Gaussian measure.- 4 Reaction-Diffusion Equations.- 4.1 Introduction and setting of the problem.- 4.2 Solution of the stochastic differential equation.- 4.3 Feller and strong Feller properties.- 4.4 Irreducibility.- 4.5 Existence of invariant measure.- 4.6 The transition semigroup in L2 (H, v).- 4.7 The integration by parts formula and its consequences.- 4.8 Comparison of v with a Gaussian measure.- 4.9 Compactness of the embedding W1,2 (H, v) ? L2 (H, v).- 4.10 Gradient systems.- 5 The Stochastic Burgers Equation.- 5.1 Introduction and preliminaries.- 5.2 Solution of the stochastic differential equation.- 5.3 Estimates for the solutions.- 5.4 Estimates for the derivative of the solution w.r.t. the initial datum.- 5.5 Strong Feller property and irreducibility.- 5.6 Invariant measure v.- 5.6.1 Estimate of some integral with respect to v.- 5.7 Kolmogorov equation.- 6 The Stochastic 2D Navier—Stokes Equation.- 6.1 Introduction and preliminaries.- 6.2 Solution of the stochastic equation.- 6.3 Estimatesfor the solution.- 6.4 Invariant measure v.- 6.5 Kolmogorov equation.
Les mer
Springer Book Archives
Springer Book Archives
Special attention to Kolmogorov equations; it is shown that, in each case, there exists a core of smooth functions. This fact is applied to define Sobolev spaces w.r.t. invariant measures and to prove, e.g., the Poincaré and log-Sobolev inequalities Absolute continuity of the invariant measure w.r.t. a suitable Gaussian measure is studied
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783764372163
Publisert
2004-12-15
Utgiver
Birkhauser Verlag AG; Birkhauser Verlag AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet

Forfatter