“The book promotes the use of stochastic fractional differential models to describe infectious disease propagation, particularly the spread of COVID-19 ... . This is primary a research book, most of the results included therein being obtained by the authors themselves and presented for the first time in book form.” (Paul Georgescu, zbMATH 1497.92002, 2022)
This book provides a thorough conversation on the underpinnings of Covid-19 spread modelling by using stochastics nonlocal differential and integral operators with singular and non-singular kernels. The book presents the dynamic of Covid-19 spread behaviour worldwide. It is noticed that the spread dynamic followed process with nonlocal behaviours which resemble power law, fading memory, crossover and stochastic behaviours. Fractional stochastic differential equations are therefore used to model spread behaviours in different parts of the worlds. The content coverage includes brief history of Covid-19 spread worldwide from December 2019 to September 2021, followed by statistical analysis of collected data for infected, death and recovery classes.
Les mer
This book provides a thorough conversation on the underpinnings of Covid-19 spread modelling by using stochastics nonlocal differential and integral operators with singular and non-singular kernels.
History on Covid-19 Spread.- Fractional Differential and Integral Operators.- Existence and Uniqueness for stochastic differential equations.- Numerical scheme for a general Stochastic equation with classical and fractional derivatives.- A simple SIR model of Covid-19 spread.- An application of SEIRD approach.- Modelling the transmission of Coronavirus with SEIR approach.- Modeling the spread of Covid-19 with a SIA IR IU approach: Inclusion of unreported infected class.- A comprehensive analysis of Covid-19 model.- Analysis of SEIARD model of Coronavirus transmission.- A mathematical model with Covid-19 reservoir.- A new model with asymptomatic and quarantined classes.
Les mer
This book provides a thorough conversation on the underpinnings of Covid-19 spread modelling by using stochastics nonlocal differential and integral operators with singular and non-singular kernels. The book presents the dynamic of Covid-19 spread behaviour worldwide. It is noticed that the spread dynamic followed process with nonlocal behaviours which resemble power law, fading memory, crossover and stochastic behaviours. Fractional stochastic differential equations are therefore used to model spread behaviours in different parts of the worlds. The content coverage includes brief history of Covid-19 spread worldwide from December 2019 to September 2021, followed by statistical analysis of collected data for infected, death and recovery classes.
Les mer
“The book promotes the use of stochastic fractional differential models to describe infectious disease propagation, particularly the spread of COVID-19 ... . This is primary a research book, most of the results included therein being obtained by the authors themselves and presented for the first time in book form.” (Paul Georgescu, zbMATH 1497.92002, 2022)
Les mer
Presents an overview of COVID-19 spread by using non-local operators for modelling real-world problems Analyses the existence and uniqueness of solutions for stochastic–fractional differential equations Explores new trends of numerical scheme for solving general stochastic–fractional differential equations
Les mer
Produktdetaljer
ISBN
9789811907289
Publisert
2022-04-23
Utgiver
Vendor
Springer Nature
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet