The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory.Contributors:· Nicolas Addington · Benjamin Antieau · Kenneth Ascher · Asher Auel · Fedor Bogomolov · Jean-Louis Colliot-Thélène · Krishna Dasaratha · Brendan Hassett · Colin Ingalls · Martí Lahoz · Emanuele Macrì · Kelly McKinnie · Andrew Obus · Ekin Ozman · Raman Parimala · Alexander Perry · Alena Pirutka · Justin Sawon · Alexei N. Skorobogatov · Paolo Stellari · Sho Tanimoto · Hugh Thomas · Yuri Tschinkel · Anthony Várilly-Alvarado · Bianca Viray · Rong Zhou
Les mer
The Brauer group is not a derived invariant.- Twisted derived equivalences for affine schemes.- Rational points on twisted K3 surfaces and derived equivalences.- Universal unramified cohomology of cubic fourfolds containing a plane.- Universal spaces for unramified Galois cohomology.- Rational points on K3 surfaces and derived equivalence.- Unramified Brauer classes on cyclic covers of the projective plane.- Arithmetically Cohen-Macaulay bundles on cubic fourfolds containing a plane.- Brauer groups on K3 surfaces and arithmetic applications.- On a local-global principle for H3 of function fields of surfaces over a finite field.- Cohomology and the Brauer group of double covers.
Les mer
The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory.Contributors:· Nicolas Addington· Benjamin Antieau· Kenneth Ascher· Asher Auel· Fedor Bogomolov· Jean-Louis Colliot-Thélène· Krishna Dasaratha· Brendan Hassett·Colin Ingalls· Martí Lahoz· Emanuele Macrì· Kelly McKinnie· Andrew Obus· Ekin Ozman· Raman Parimala· Alexander Perry· Alena Pirutka· Justin Sawon· Alexei N. Skorobogatov· Paolo Stellari· Sho Tanimoto· Hugh Thomas· Yuri Tschinkel· Anthony Várilly-Alvarado· Bianca Viray· Rong Zhou
Les mer
Offers a unique synthesis of techniques: tools from complex algebraic geometry are applied to fundamental questions in number theory and Diophantine geometry Investigates the connection between derived equivalences and existence of rational points on varieties, especially on K3 surfaces Includes a founding paper in the emerging theory of universal triviality of the Chow group of 0-cycles and its relationship to stable rationality problems
Les mer

Produktdetaljer

ISBN
9783319836010
Publisert
2018-07-18
Utgiver
Vendor
Birkhauser Verlag AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet