Part I Fundamental of Universe, Matter, Condensed Matter and Materials 1 1 Universe, Matter, Condensed Matter and Materials 3 1.1 Features of the Universe and Fundamental Constants 4 1.2 Structure and Composition of Matter 9 1.2.1 Classification and Characteristics of Matter (Radiation Coupling and Energy Conservation) 9 1.2.2 Fundamental Particles 9 1.2.3 Fundamental Forces 11 1.3 Fundamental Constants Describing the Universe and Matter 15 1.4 Experiments to Study Fundamental Particles and Forces 20 1.5 Introduction to Condensed Matter and Materials 27 1.5.1 Classification of Condensed Matter 28 1.5.2 Structures and Compositions of Condensed Matter or Materials 30 1.5.3 Intrinsic Properties of Condensed Matter and Materials 32 1.6 Main Research Areas in Condensed Matter Physics 33 Questions for Thinking 34 References 34 2 The Laser Interferometer Gravitational-Wave Observatory 37 2.1 A Brief History of Gravitational and Gravitational-Wave Measurements 37 2.2 Fundamentals of LIGO and Related Facility Development 39 2.2.1 Detecting Gravitational Waves 41 2.2.2 Educational Analogy Experiments 44 2.2.2.1 Herriott Delay Line 45 2.3 Key Components of the LIGO Facility 47 2.3.1 Coherent Laser Source and Laser 47 2.3.2 The Laser Interferometer Detector 47 2.3.3 Fourier Transform and Signal Processing System 48 2.4 Application of LIGO 49 2.4.1 Detection of a Supernova Explosion 49 2.4.2 Detection of Black Hole Fusion 50 Questions for Thinking 51 List of Abbreviations 51 References 51 3 Fundamentals of Crystallography: Microstructures and Crystal Phases of Condensed Matter 55 3.1 The Microstructure of Condensed Matter and Materials 55 3.1.1 The Microscale 55 3.1.2 The Hard-Sphere Model 56 3.1.3 Energy and Packing 57 3.1.4 Crystals, Quasicrystals and Amorphous Structures 58 3.2 The Unit Cell 60 3.2.1 Lattice and Motif 60 3.2.2 Lattice and Crystal Structure 61 3.2.3 Unit Cell and Unit Vectors 61 3.2.4 Unit Cells, Bravais Lattices and Crystal Systems 63 3.2.5 Unit Cells and Their Parameters 65 3.3 Crystal Structures (Phases) 65 3.3.1 Close Packing and Stacking 65 3.3.2 The Face-Centered Cubic (FCC) Lattice and its Parameters 67 3.3.3 The Body-Centered Cubic (BCC) Lattice and its Parameters 69 3.3.4 The Hexagonal Close-Packed (HCP) Lattice and its Parameters 70 3.3.5 Point Coordinates and Crystallographic Directions 71 3.3.6 Crystallographic Families and Symmetry 72 3.3.7 Coordinate Transformations 72 3.3.8 Crystallographic Planes and Miller Indices 73 3.3.9 Linear Density, Planar Density and Crystal Density 74 3.4 Quasicrystals 77 3.4.1 A Brief History of Quasicrystals 77 3.4.2 Phase and Structure Characteristics of Quasicrystals 79 Questions for Thinking 79 References 80 Part II Electromagnetic Spectroscopy 81 4 Elements of X-Ray Diffraction 83 4.1 Diffraction of X-Rays 83 4.1.1 The Kinematical Theory of Diffraction 85 4.1.2 The Dynamical Diffraction Theory 85 4.1.3 The Mechanism of the Interaction between X-Rays and the Unit Cell 86 4.1.4 Scattering of X-Rays and the Structure Factor of the Unit Cell 86 4.2 Development of X-Ray Diffraction 88 4.3 Generation of X-Rays 91 4.3.1 X-Ray Tubes: Cathode Ray Tube Structure 91 4.3.2 The Interaction of X-Rays with Matter 92 4.3.2.1 Scattering of X-Rays 92 4.3.2.2 Absorption of X-Rays by Matter 93 4.4 Applications 94 4.4.1 Crystal Phase Analysis 94 4.4.2 Determination of Inner Stress of Condensed Samples 97 4.4.2.1 Measurement of Residual Stress in Polycrystalline Materials 98 4.4.2.2 Measurement of Residual Stress in Single-Crystalline Materials 100 Questions for Thinking 101 References 101 5 X-Ray Fluorescence Spectroscopy (XRF) 103 5.1 Theoretical Foundations 103 5.2 General Setup of an XRF Spectrometer 104 5.3 Types of XRF Analyzers 107 5.4 History and Current Status of XRF 108 5.5 Applications 109 5.6 Appendix 112 5.6.1 Analysis of XRF Spectra 112 5.6.2 Total Reflection XRF, Proton-Excited XRF and Synchrotron Radiation XRF Spectrometry 113 Questions for Thinking 114 References 114 6 X-Ray Emission Spectroscopy (XES) 115 6.1 Principles of XAS and XES 115 6.2 Classification of XES 118 6.3 History of XES and Common XES Spectrometers 119 6.4 Applications 119 Questions for Thinking 121 References 121 7 X-Ray Absorption Spectroscopy (XAS) 123 7.1 The Physics of XAS 123 7.1.1 The Principle of X-Ray Absorption Near-Edge Structure (XANES) Spectroscopy 123 7.1.2 The Principle of Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy 124 7.2 Generation of X-Ray Synchrotron Radiation 125 7.2.1 The Structure of Synchrotron Radiation Facilities 126 7.2.2 Synchrotron Radiation Facilities Around the World 127 7.3 Applications of XANES Spectroscopy 132 7.4 Applications of EXAFS Spectroscopy 133 7.5 Differences Between EXAFS and XANES 133 Questions for Thinking 134 References 134 8 X-Ray Raman Scattering (XRS) 137 8.1 Interaction of Light and Matter in XRS 137 8.2 A Brief History of XRS Spectrometers 139 8.3 Components of an XRS Spectrometer 141 8.3.1 X-Ray Scattering Crystal Detector 141 8.3.2 High-Resolution Crystal Detector 142 8.3.3 A Superlattice Thin-Film Mirror Surface as a Double Multilayer Monochromator 142 8.3.4 The Detection of Scattered Photons in XRS 143 8.4 Applications of XRS 143 8.4.1 Chemistry 143 8.4.2 Polymer Science 143 8.4.3 Materials Science 144 8.4.4 Biology 145 8.4.5 Chinese Herbal Medicine 146 8.4.6 Gem Research 146 8.4.7 Investigation of Cultural Relics 147 8.5 Summary and Outlook 147 Questions for Thinking 148 References 148 9 Fourier-Transform Infrared (FTIR) Spectroscopy 149 9.1 General Scope of FTIR Spectroscopy 149 9.2 A Brief History of IR Spectrometers 150 9.3 Basic Concepts 150 9.4 Setup of a Standard FTIR Instrument 153 9.5 Advantages of FTIR Spectroscopy 155 9.5.1 Signal-to-Noise Ratio and Linearity 155 9.5.2 Accuracy 155 9.5.3 Data Handling Facility 155 9.5.4 Mechanical Simplicity 155 9.6 Key Elements of an FTIR Spectrometer 156 9.6.1 IR Light Source and Laser 156 9.6.2 Michelson Interferometer and Beam Splitter 156 9.6.2.1 Michelson Interferometer 156 9.6.2.2 Measuring and Processing the Interferogram 158 9.6.2.3 Beamsplitter 160 9.6.3 Infrared Photodetector 160 9.6.4 Fourier Transform and Signal Processing System 161 9.7 Spectral Range 161 9.7.1 Far Infrared 161 9.7.2 Mid Infrared 161 9.7.3 Near Infrared 161 9.8 Application of FTIR Spectroscopy 162 9.8.1 Biological Materials 162 9.8.2 Microscopy and Imaging 162 9.8.3 Studies at the Nanoscale and Spectroscopy Below the Diffraction Limit 162 9.8.4 FTIR Systems as Detectors in Chromatography 162 9.8.5 Thermogravimetric Analysis 163 9.8.6 Emission Spectroscopy and IR Chemiluminescence 163 9.8.7 Kinetics of Chemical Reactions and Spectra of Transient Species 163 Questions for Thinking 164 References 164 10 Energy-Dispersive X-Ray (EDX) Spectroscopy of Elements 167 10.1 Principles of EDX Spectroscopy 167 10.1.1 Production of Characteristic X-Rays 167 10.2 A Brief History of EDX Spectrometer Development 169 10.3 Key Components of EDX Spectrometers 170 10.3.1 The X-Ray Generator 170 10.3.2 The Vacuum System 170 10.3.3 The X-Ray Detector 171 10.3.3.1 The Semiconductor Detectors 171 10.3.3.2 The Direct Detectors 172 10.3.3.3 The Indirect Detectors 172 10.3.4 The Signal Processing System 173 10.4 Applications of EDX Spectroscopy 173 10.4.1 Surface Penetration 173 10.4.2 Elemental Resolution, Reliability, and Errors 173 10.4.3 Characteristics of EDX Energy Spectrometers 174 Questions for Thinking 175 References 176 Part III Characterization Methods Based on the Particle (electron Or Electron Beam, Neutron)–matter Interaction 177 11 Scanning Electron Microscopy (SEM) 179 11.1 Interaction Between the Electron Beam and Matter 180 11.1.1 Elastic Scattering 180 11.1.2 Inelastic Scattering 181 11.2 Signal Detection 182 11.2.1 Primary and Secondary Electrons 183 11.2.2 Backscattered Electrons and Auger Electrons 183 11.2.3 The Relation Between Surface Topography and Secondary Electrons 184 11.2.4 The Relation Between Atomic Number z and Backscattered Electrons 184 11.3 History of SEM Development 185 11.4 Key Components of SEM Devices 186 11.4.1 Electron Beam Sources 186 11.4.1.1 Thermionic Electron Guns 186 11.4.1.2 Field-Emission Electron Guns 187 11.4.2 Electronic Detectors 187 11.4.3 Signal Processing and Imaging System 188 11.5 Application and Expansion of SEM 190 11.5.1 Analysis of Powder Particles 190 11.5.2 Fracture Analysis 190 11.5.3 Observation and Analysis Metallographic Structures 190 11.5.4 Dynamic Study of Fracture Processes 191 Questions for Thinking 191 References 191 12 Transmission Electron Microscopy (TEM) 193 12.1 The Interaction Between Electrons and Atoms 193 12.1.1 Transmitted Electrons and Bright-Field Image 195 12.2 Brief History of EM and TEM Development 195 12.3 Key Components of EM and TEM Instruments 198 12.3.1 The Basic Structure of a TEM 198 12.3.1.1 Illumination System 198 12.3.1.2 Electron Gun 199 12.3.1.3 Electromagnetic Lenses 199 12.3.1.4 Imaging System 201 12.3.1.5 Viewing and Recording System 202 12.4 Applications and Extensions of TEM 202 12.4.1 Analysis of Microstructure and Morphology 202 12.4.2 Element Distribution and Morphology Analysis Using EDX Combined with TEM 203 12.4.3 High-Angle Annular Dark-Field (HAADF) STEM 204 Questions for Thinking 205 References 206 13 Spherical-Aberration-Corrected Transmission Electron Microscopy (sac-tem) 207 13.1 The Principle of Spherical Aberration Correction 207 13.2 History of SAC-TEM and Spherical Aberration Correctors 207 13.2.1 The Development of SAC-TEM 207 13.2.2 Spherical Aberration Correctors 208 13.3 Applications of SAC-TEM or SAC-STEM 210 13.3.1 Atomic Structure Characterization 210 13.3.2 Surface and Interface Study 210 13.3.3 Differentiation of Light Elements 211 Questions for Thinking 213 References 213 14 Environmental Transmission Electron Microscopy (ETEM) 215 14.1 Design of Environmental TEM Instruments 216 14.1.1 Windowed Cell 216 14.1.2 Differential Pumping 217 14.2 Applications of ETEM 219 14.2.1 In-Situ Observation of Vapor–Liquid–Solid Growth in the Formation of Nanowires 219 14.2.2 In-Situ Reduction of Metal Oxides 220 14.2.3 Photocatalytic Splitting of Water 222 14.2.4 Particle Formation and Migration 223 14.2.5 Nucleation and Growth of Nanomaterials in Liquid Solution 224 Questions for Thinking 227 References 227 15 Holography 229 15.1 Principles and Foundations 229 15.1.1 The Holographic Principle 229 15.1.2 Electronic Holography 231 15.1.3 Characteristics of Electronic Holography 233 15.2 History 236 15.3 Applications of Electronic Holography 238 15.3.1 The Principle of Observing Electromagnetic Fields with Electronic Holography 238 15.3.2 Fine Structures of Domain Walls in Magnetic Films 239 15.3.3 Micro-Distribution of Magnetic Fields 240 15.3.4 Observing Recorded Magnetization Patterns 240 15.3.5 Quantitative Measurement of Magnetic Moments Using Electron Holography 241 Questions for Thinking 242 References 242 Part IV Characterization Methods for Hyperfine Structures Related to the Magnetic Properties of Electrons and Nuclei 245 16 Nuclear Magnetic Resonance (NMR) Spectroscopy 247 16.1 Basic Theory and Principles 247 16.1.1 Nuclear Spins and Magnetic Moments 247 16.1.2 Relaxation of Nuclear Magnetic Moments 249 16.2 Pulsed Fourier-Transform (FT) NMR Spectrometry 251 16.2.1 Basic Setup of an NMR Spectrometer 251 16.2.2 Basic Operating Principle 252 16.2.3 Parameters and Performance of NMR Measurements 253 16.3 Acquisition of NMR Signals 255 16.3.1 Magnetic Field Gradients 255 16.3.2 Pulse Sequences in MRI 257 Questions for Thinking 259 References 260 17 Mössbauer Effect and Mössbauer Spectroscopy 261 17.1 Introduction 261 17.2 History and Development 262 17.3 Principles and Fundamentals 263 17.3.1 Mössbauer Effect 263 17.3.2 Mössbauer Spectroscopy 264 17.4 Analysis of Mössbauer Spectra 265 17.4.1 Isomer Shift 265 17.4.2 Quadrupole Splitting 266 17.4.3 Magnetic Hyperfine Splitting or Nuclear Zeeman Effect 267 17.5 Instrumentation and Equipment 268 17.5.1 Actuating Device 268 17.5.2 γ-Ray Sources 269 17.5.3 γ-Ray Detectors 269 17.5.4 Amplifier and Pulse-Height Measuring System 271 17.5.5 Data Collector, Processor, and Analyzer 271 17.6 Applications of the Mössbauer Effect and Mössbauer Spectroscopy 272 17.6.1 Features of the Mössbauer Effect and of Mössbauer Spectroscopy 272 17.6.2 Specific Applications 273 Questions for Thinking 275 References 275 Part V Surface Analysis Method 277 18 Atomic Force Microscopy 279 18.1 Detection of Surface Morphology with AFM 279 18.2 History of AFM 281 18.3 Key Components of an AFM Instrument 281 18.3.1 Cantilever and Laser System 281 18.3.1.1 Laser 281 18.3.1.2 Cantilever 281 18.3.2 Piezoelectric Scanner 282 18.3.3 Operating Modes 283 18.3.3.1 Static or Contact Mode 283 18.3.3.2 Dynamic Mode 283 18.3.3.3 Tapping Mode 284 18.3.3.4 Noncontact Mode 285 18.4 Applications and Extensions of AFM 286 18.4.1 Surface Topography 286 18.4.2 Atomic Force Spectroscopy 287 18.4.3 In-situ Observation of Biomolecular Processes 287 18.5 Recent Progress of AFM 288 18.5.1 Principles and Applications of Scanning Near-Field Ultrasonic Holography Under AFM Platform 288 18.5.2 Ultrasonic AFM for the Detection of Subsurface Morphology 288 18.5.3 Photoacoustic Microscopy 290 Questions for Thinking 291 References 291 19 X-Ray Photoelectron Spectroscopy (XPS) 293 19.1 Brief History of XPS Spectroscopy 293 19.2 Applications of XPS Spectroscopy 293 19.2.1 Surface Sensitivity 293 19.2.2 Element Resolution, Reliability, and Error 294 19.2.3 Typical Analysis of XPS Spectra 295 Questions for Thinking 296 References 296 Part VI Some Progress and Perspective 297 20 New and Recent Experimental Techniques 299 20.1 Methods Based on Interactions Between Electromagnetic Waves and Matter 299 20.1.1 Confocal Laser Scanning Fluorescence Microscopy 299 20.1.2 Two-Photon Microscopy 301 20.1.3 Optical-Mode Photoacoustic Microscopy 302 20.1.4 Multicolor 3D Fluorescence Microscopy 303 20.1.5 Optical Coherence Tomography 305 20.1.6 X-Ray Free-Electron Lasers 307 20.1.7 Femtosecond Lasers 308 20.1.7.1 Applications of Femtosecond Lasers 309 20.2 Methods Based on Interactions Between Electrons and Matter 310 20.2.1 Environmental Scanning Electron Microscopy 310 20.2.1.1 Main Features of ESEM 311 20.2.1.2 Representative Applications of ESEM 312 20.2.2 High-Resolution STEM 313 20.2.3 Transmission Electron Cryomicroscopy 314 20.2.4 Scanning-Probe Microscopy 315 Questions for Thinking 316 References 316 Answers to “Questions for Thinking” 319 Index 349
Les mer