In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. Topology has profound relevance to quantum field theory-for example, topological nontrivial solutions of the classical equa­ tions of motion (solitons and instantons) allow the physicist to leave the frame­ work of perturbation theory. The significance of topology has increased even further with the development of string theory, which uses very sharp topologi­ cal methods-both in the study of strings, and in the pursuit of the transition to four-dimensional field theories by means of spontaneous compactification. Im­ portant applications of topology also occur in other areas of physics: the study of defects in condensed media, of singularities in the excitation spectrum of crystals, of the quantum Hall effect, and so on. Nowadays, a working knowledge of the basic concepts of topology is essential to quantum field theorists; there is no doubt that tomorrow this will also be true for specialists in many other areas of theoretical physics. The amount of topological information used in the physics literature is very large. Most common is homotopy theory. But other subjects also play an important role: homology theory, fibration theory (and characteristic classes in particular), and also branches of mathematics that are not directly a part of topology, but which use topological methods in an essential way: for example, the theory of indices of elliptic operators and the theory of complex manifolds.
Les mer
But other subjects also play an important role: homology theory, fibration theory (and characteristic classes in particular), and also branches of mathematics that are not directly a part of topology, but which use topological methods in an essential way: for example, the theory of indices of elliptic operators and the theory of complex manifolds.
Les mer
0 Background.- 1 Fundamental Concepts.- 2 The Degree of a Map.- 3 The Fundamental Group and Covering Spaces.- 4 Manifolds.- 5 Differential Forms and Homology in Euclidean Space.- 6 Homology and Cohomology.- 7 Homotopy Classification of Maps of the Sphere.- 8 Homotopy Groups.- 9 Fibered Spaces.- 10 Fibrations and Homotopy Groups.- 11 Homotopy Theory of Fibrations.- 12 Lie Groups.- 13 Lie Algebras.- 14 Topology of Lie Groups and Homogeneous Manifolds.- 15 Geometry of Gauge Fields.- Index of Notation.
Les mer
"This volume, written by someone who has made many significant contributions to mathematical physics, not least to the present dialogue between mathematicians and physicists, aims to present some of the basic material in algebraic topology at the level of a fairly sophisticated theoretical physics graduate student. The most important topics, covering spaces, homotopy and homology theory, degree theory fibrations and a little about Lie groups are treated at a brisk pace and informal level. Personally I found the style congenial.(...) extremely useful as background or supplementary material for a graduate course on geometry and physics and would also be useful to those contemplating giving such a course. (...)" Contemporary Physics, A. Schwarz GL 308
Les mer
Corrected printing
Includes supplementary material: sn.pub/extras
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783540547549
Publisert
1994-08-18
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, UP, P, 05, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet

Forfatter
Oversetter