Overview of techniques in the field of microwave photonics, including recent developments in quantum microwave photonics and integrated microwave photonics Microwave Photonics offers a comprehensive overview of the microwave photonic techniques developed in the last 30 years, covering topics such as photonics generation of microwave signals, photonics processing of microwave signals, photonics distribution of microwave signals, photonic generation and distribution of UWB signals, photonics generation and processing of arbitrary microwave waveforms, photonic true time delay beamforming for phased array antennas, photonics-assisted instantaneous microwave frequency measurement, quantum microwave photonics, analog-to-digital conversion and more. The text is supported by a companion website for instructors, including learning objectives and questions/problems to further enhance student learning. Written by key researchers in the field, Microwave Photonics includes information on: Group-velocity dispersion and nonlinear effects in fibers, light coherence in light sources, phase and intensity modulators, photodetectors, and fiber Bragg gratings Injection locking, phase lock loops, external modulation, opto-electronic oscillators, and array waveguide gratings Photonic microwave delay-line filters with negative and complex coefficients and non-uniformly spaced photonic microwave delay-line filters Double- and single-sideband modulation, radio over fiber networks, and microwave photonics to coherent communication systems UWB generation, coding, and distribution over fiber, and instantaneous microwave frequency measurement via power monitoring True time delay beamforming Exploring the subject in depth, with expansive coverage of techniques developed in the last 30 years, Microwave Photonics is an essential reference for graduate students and researchers to learn microwave photonic technologies.
Les mer
About the Authors xi About the Companion Website xiii 1 Introduction to Microwave Photonics 1 1.1 Photonic Generation of Microwave Signals 1 1.2 Photonic Microwave Signal Processing 1 1.3 Photonic Distribution of Microwave Signals 2 1.4 Photonic Generation of Ultra-wideband Signals 2 1.5 Photonic Generation of Microwave Arbitrary Waveforms 3 1.6 Microwave Photonic Beamforming Networks for Phased Array Antennas 3 1.7 Photonic-Assisted Instantaneous Microwave Frequency Measurements 3 1.8 Microwave Photonic Sensors 4 1.9 Photonic Analog-to-Digital Conversion 4 1.10 Novel Optoelectronic Oscillators 4 1.11 Quantum Microwave Photonics 5 1.12 Integrated Microwave Photonics 5 1.13 Applications of Microwave Photonics 5 2 Optical Devices for Microwave Photonics 7 2.1 Introduction 7 2.2 Optical Fibers and Planar Waveguides 7 2.2.1 Structure and Geometry of Optical Fibers and Planar Waveguides 8 2.2.2 Basic Electromagnetic Theory for Optical Fibers and Planar Waveguides 10 2.2.3 Propagation in Optical Fibers 12 2.2.4 Propagation in Planar Dielectric Waveguides 21 2.3 Light Sources, Detectors, and Modulators 24 2.3.1 Fundamentals of the Interaction Between Radiation and Matter 24 2.3.2 Semiconductor Materials for Optical Sources and Detectors 27 2.3.3 Optical Sources 38 2.3.4 Optical Detectors 59 2.3.5 Optical Modulators 66 2.4 Fiber Bragg Gratings 73 2.4.1 Theory and Design of Fiber Bragg Grating Filters 75 2.4.2 Performance Characteristics of FBGs 77 2.5 Array Waveguide Gratings 79 2.6 Other Passive Components 82 2.6.1 2 × 2 Couplers 82 2.6.2 Isolators 83 2.6.3 Circulators 84 2.7 Chapter Summary 86 References 86 3 Photonic Generation of Microwave Signals 87 3.1 Introduction 87 3.2 Optical Injection Locking 88 3.3 Optical Phase-Locked Loop 89 3.4 Optical Injection Phase Locking 90 3.5 Microwave Generation Based on External Modulation 91 3.5.1 Intensity Modulator-Based Approach 91 3.5.2 Phase-Modulator-Based Approach 92 3.6 Microwave Generation Using a Dual-Wavelength Laser 93 3.7 Microwave Generation Using an Optoelectronic Oscillator 96 3.8 Performance Comparison of the Techniques for Photonic Microwave Generation 99 3.9 Summary 101 References 101 4 Photonic-Assisted Microwave Signal Processing 105 4.1 Introduction 105 4.2 Microwave Photonic Filters 105 4.2.1 Photonic Microwave Delay-Line Filters with Negative Coefficients 107 4.2.2 Photonic Microwave Delay-Line Filters with Complex Coefficients 114 4.2.3 Nonuniformly Spaced Photonic Microwave Delay-Line Filters 116 4.3 Optical Mixing of Microwave Signals 119 4.4 Coherent Microwave Photonic Filters 123 4.5 Dynamic Range of a Microwave Photonic Filter 131 4.6 Conclusion 132 References 133 5 Photonic Distribution of Microwave Signals 137 5.1 Introduction 137 5.2 Introduction to Microwave Photonics Links 137 5.3 Figures of Merit of a Simple Microwave Photonic Link 138 5.3.1 RF Gain 139 5.3.2 Noise 141 5.3.3 Dynamic Range 142 5.4 Figures of Merit of a Filtered Microwave Photonic Link 148 5.4.1 Filtered Intensity Modulated Direct Detection Links 149 5.4.2 Filtered Phase Modulated Links 152 5.4.3 Application Examples 155 5.5 Introduction to Fiber-Wireless Systems 156 5.6 Optical Transport of Wireless Signals 157 5.6.1 Radio Over Fiber 157 5.6.2 Intermediate Frequency Over Fiber 158 5.6.3 Baseband Over Fiber 159 5.7 Sources of Degradation and Impairments 160 5.7.1 Chromatic Dispersion 160 5.7.2 Optical Nonlinearities 163 5.8 Fiber-Wireless Networks 165 5.8.1 Spectral Efficiency 165 5.8.2 Optical Subsystems for Fiber-Wireless Networks 166 5.8.3 Application Scenarios 171 5.9 Chapter Summary 174 Problems 175 References 176 6 Photonic Generation of Ultra-Wideband Signals 181 6.1 Introduction 181 6.2 UWB Pulse Generation Based on PM-IM Conversion 182 6.2.1 Optical Phase Modulation 183 6.2.2 PM-IM Conversion 183 6.2.3 UWB Pulse Generation Based on PM-IM Conversion in a Dispersive Device 189 6.2.4 UWB Pulse Generation Based on PM-IM Conversion in an Optical Frequency Discriminator 191 6.3 UWB Pulse Generation Based on a Photonic Microwave Delay Line Filter 195 6.3.1 Photonic Microwave Delay-Line Filters for UWB Pulse Generation 196 6.3.2 UWB Monocycle Generation with a Two-Tap Microwave Delay-Lines Filter 198 6.3.3 UWB Doublet Generation with a Three-Tap Microwave Delay-Line Filter 200 6.4 UWB Pulse Generation based on Spectral Shaping and Frequency-to-Time Mapping 201 6.4.1 UWB Pulse Generation Based on Optical Spectral Shaping and Frequency-to-Time Mapping 202 6.4.2 Implementation of All-Fiber UWB Pulse Generation based on Spectral Shaping and Frequency-to-Time Mapping 203 6.5 Discussion and Conclusion 205 References 206 7 Photonic Generation of Microwave Arbitrary Waveforms 209 7.1 Introduction 209 7.2 Direct Space-to-Time Pulse Shaping 209 7.3 Spectral-Shaping and Wavelength-to-Time Mapping 213 7.4 Temporal Pulse Shaping 221 7.5 Microwave Waveform Generation Based on a Photonic Microwave Delay-Line Filter 228 7.6 Conclusion 233 References 234 8 Microwave Photonics Beamforming Networks for Phased Array Antennas 237 8.1 Introduction 237 8.2 Basic Concepts on Phased Array Antennas 238 8.2.1 Principles of Operation 238 8.2.2 Design Parameters 241 8.2.3 PAA Feed Architectures 245 8.3 True Time Delay Optical Beamforming Networks 246 8.4 Phase-Shift Optical Beamforming Networks 264 8.5 Summary and Conclusions 269 Problems 269 References 271 9 Photonic-Assisted Instantaneous Frequency Measurements 277 9.1 Introduction 277 9.2 Frequency Measurement Using an Optical Channelizer 279 9.2.1 Optical Phased-Array WDM 280 9.2.2 Free-Space Diffraction Grating 281 9.2.3 Phase-Shifted Chirped Fiber Bragg Grating Arrays 282 9.2.4 Integrated Optical Bragg Grating Fabry–Perot Etalon 283 9.3 Frequency Measurement Based on Power Monitoring 283 9.3.1 Chromatic Dispersion-Induced Microwave Power Penalty 284 9.3.2 Break the Lower Frequency Bound 289 9.3.3 IFM Based on Photonic Microwave Filters with Complementary Frequency Responses 292 9.3.4 First-Order Photonic Microwave Differentiator 294 9.3.5 Optical Power Fading Using Optical Filters 297 9.4 Other Methods for Frequency Measurement 299 9.4.1 Fabry–Perot Scanning Receiver 299 9.4.2 Photonic Hilbert Transform 300 9.4.3 Monolithically Integrated EDG 301 9.4.4 Incoherent Frequency-to-Time Mapping 301 9.5 Conclusion 303 References 304 10 Microwave Photonic Sensors 309 10.1 Introduction 309 10.2 Optical Sensors Based on a Dual-Wavelength Laser Source 310 10.3 Optical Sensors Based on an Optoelectronic Oscillator 314 10.4 Optical Sensors Based on Spectrum Shaping and Wavelength-to-Time Mapping 321 10.5 Photonic Integrated Microwave Photonic Sensors 326 10.6 Conclusion 329 References 330 11 Photonic Analog-to-Digital Conversion 333 11.1 Introduction 333 11.2 Basic Concepts on Analog-to-Digital Converters 334 11.2.1 Types of Converters 334 11.2.2 Operation Principles of the Nyquist ADC 335 11.2.3 State of the Art of Electronic ADCs 338 11.2.4 Classification of Photonic ADCs 340 11.3 Photonic-Assisted ADCs 340 11.3.1 Classification of Photonic-Assisted ADCs 340 11.3.2 Optically Clocked Track-and-Hold Circuits 341 11.3.3 Optical Replication Pre-Processors 343 11.3.4 Optical Time-Stretched Pre-Processors 345 11.4 Photonic Sampled/Electronic Quantized ADCs 347 11.5 Electronic Sampled/Photonic Quantized ADCs 354 11.6 Photonic Sampled/Photonic Quantized ADCs 355 11.6.1 Classification of Photonic Sampled/Photonic Quantized Converters 355 11.6.2 Intensity Modulation and Conversion 355 11.6.3 Intensity Modulation and Optical Comparator 358 11.6.4 Phase Modulation and Optical Beam Deflection 358 11.7 Chapter Summary 361 Problems 361 References 363 12 Novel Optoelectronic Oscillators 367 12.1 Introduction 367 12.2 Models for Optoelectronic Oscillators 368 12.3 Parity-Time Symmetric OEO 378 12.4 Fourier Domain Mode-Locked OEO 382 12.5 OEPO 385 12.6 Broad Random OEO 388 12.7 Integrated OEO 392 12.8 Discussion and Conclusion 395 References 396 13 Integrated Microwave Photonics 401 13.1 Introduction 401 13.2 Integration Technologies and Platforms 403 13.2.1 Indium Phosphide 403 13.2.2 Silicon Photonics 405 13.2.3 Silicon Nitride 405 13.2.4 Other Platforms 406 13.2.5 Comparative Analysis 406 13.3 Application-Specific Photonic Integrated Circuits for Microwave Photonics 408 13.3.1 Filters 409 13.3.2 Microwave Signal Generators 409 13.3.2.1 Optoelectronic Oscillators 411 13.3.2.2 Comb Sources 413 13.3.2.3 IR-UWB Generators 413 13.3.2.4 Arbitrary Waveform Generators 415 13.3.3 Tunable True Time Delay Lines and Phase Shifters 419 13.3.4 Optical Beamforming 421 13.4 Multifunctional Circuits 424 13.5 Universal Microwave Photonic Processors 426 13.5.1 Early Designs 427 13.5.2 Waveguide Mesh Core Processors 428 13.5.3 Waveguide Mesh MWP Universal Processors 434 13.6 Conclusions and Future Prospects 441 References 442 14 Quantum Microwave Photonics 449 14.1 Introduction 449 14.2 Principle of the Single-Photon Detection Scheme 450 14.3 Weak Signal Detection 453 14.4 Quantum Microwave Photonic Signal Processing 454 14.5 Nonlocal Frequency-to-Time Mapping 455 14.6 Compressed Sensing 457 14.7 Microwave Photonic Quantum Key Distribution 458 14.8 Discussion and Conclusion 460 References 461 15 Future and Perspectives 465 15.1 Introduction 465 15.2 Future and Perspectives 465 15.3 Discussion and Conclusion 468 References 468 Index 471
Les mer
Overview of techniques in the field of microwave photonics, including recent developments in quantum microwave photonics and integrated microwave photonics Microwave Photonics offers a comprehensive overview of the microwave photonic techniques developed in the last 30 years, covering topics such as photonics generation of microwave signals, photonics processing of microwave signals, photonics distribution of microwave signals, photonic generation and distribution of UWB signals, photonics generation and processing of arbitrary microwave waveforms, photonic true time delay beamforming for phased array antennas, photonics-assisted instantaneous microwave frequency measurement, quantum microwave photonics, analog-to-digital conversion and more. The text is supported by a companion website for instructors, including learning objectives and questions/problems to further enhance student learning. Written by key researchers in the field, Microwave Photonics includes information on: Group-velocity dispersion and nonlinear effects in fibers, light coherence in light sources, phase and intensity modulators, photodetectors, and fiber Bragg gratings Injection locking, phase lock loops, external modulation, opto-electronic oscillators, and array waveguide gratings Photonic microwave delay-line filters with negative and complex coefficients and non-uniformly spaced photonic microwave delay-line filters Double- and single-sideband modulation, radio over fiber networks, and microwave photonics to coherent communication systems UWB generation, coding, and distribution over fiber, and instantaneous microwave frequency measurement via power monitoring True time delay beamforming Exploring the subject in depth, with expansive coverage of techniques developed in the last 30 years, Microwave Photonics is an essential reference for graduate students and researchers to learn microwave photonic technologies.
Les mer

Produktdetaljer

ISBN
9781394205288
Publisert
2024-03-05
Utgiver
Vendor
Wiley-IEEE Press
Vekt
1216 gr
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
496

Om bidragsyterne

Jianping Yao is a Distinguished Professor and University Research Chair in Microwave Photonics in the School of Electrical Engineering and Computer Science (EECS), University of Ottawa, Ottawa, Ontario, Canada.

José Capmany is a Full Professor of photonics and the Leader of the Photonics Research Labs, Institute of Telecommunications and Multimedia Applications, Universitat Politècnica de València, Valencia, Spain.

Ming Li is a Full Professor with the Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China.