<p>From the reviews:</p> <p></p> <p>"The book is concerned with mutual relations between the differential geometry of surfaces and the theory of integrable nonlinear systems of partial differential equations. It concentrates on the Darboux matrix method for constructing explicit solutions to various integrable nonlinear PDEs. … This book can be recommended for students and researchers who are interested in a differential-geometric approach to integrable nonlinear PDE’s." (Jun-ichi Inoguchi, Mathematical Reviews, Issue 2006 i)</p>

GU Chaohao The soliton theory is an important branch of nonlinear science. On one hand, it describes various kinds of stable motions appearing in - ture, such as solitary water wave, solitary signals in optical ?bre etc., and has many applications in science and technology (like optical signal communication). On the other hand, it gives many e?ective methods ofgetting explicit solutions of nonlinear partial di?erential equations. Therefore, it has attracted much attention from physicists as well as mathematicians. Nonlinearpartialdi?erentialequationsappearinmanyscienti?cpr- lems. Getting explicit solutions is usually a di?cult task. Only in c- tain special cases can the solutions be written down explicitly. However, for many soliton equations, people have found quite a few methods to get explicit solutions. The most famous ones are the inverse scattering method,B.. acklund transformation etc. The inverse scattering method is based on the spectral theory of ordinary di?erential equations. The Cauchyproblemofmanysolitonequationscanbetransformedtosolving a system of linear integral equations. Explicit solutions can be derived when the kernel of the integral equation is degenerate. The B.. ac .. klund transformation gives a new solution from a known solution by solving a system of completely integrable partial di?erential equations. Some complicated "nonlinear superposition formula" arise to substitute the superposition principlein linear science.
Les mer
Presents the Darboux transformations in matrix form and provides algebraic algorithms for constructing the explicit solutions. This work elucidates the behavior of simple and multi-solutions, even in multi-dimensional cases. It contains many results that were obtained by the authors in the past few years.
Les mer
1+1 Dimensional Integrable Systems.- 2+1 Dimensional Integrable Systems.- N + 1 Dimensional Integrable Systems.- Surfaces of Constant Curvature, Bäcklund Congruences and Darboux Transformation.- Darboux Transformation and Harmonic Map.- Generalized Self-Dual Yang-Mills Equations and Yang-Mills-Higgs Equations.- Two Dimensional Toda Equations and Laplace Sequences of Surfaces in Projective Space.
Les mer
The Darboux transformation approach is one of the most effective methods for constructing explicit solutions of partial differential equations which are called integrable systems and play important roles in mechanics, physics and differential geometry. This book presents the Darboux transformations in matrix form and provides purely algebraic algorithms for constructing the explicit solutions. A basis for using symbolic computations to obtain the explicit exact solutions for many integrable systems is established. Moreover, the behavior of simple and multi-solutions, even in multi-dimensional cases, can be elucidated clearly. The method covers a series of important equations such as various kinds of AKNS systems in R1+n, harmonic maps from 2-dimensional manifolds, self-dual Yang-Mills fields and the generalizations to higher dimensional case, theory of line congruences in three dimensions or higher dimensional space etc. All these cases are explained in detail. This book contains many results that were obtained by the authors in the past few years. Audience: The book has been written for specialists, teachers and graduate students (or undergraduate students of higher grade) in mathematics and physics.
Les mer
From the reviews: "The book is concerned with mutual relations between the differential geometry of surfaces and the theory of integrable nonlinear systems of partial differential equations. It concentrates on the Darboux matrix method for constructing explicit solutions to various integrable nonlinear PDEs. … This book can be recommended for students and researchers who are interested in a differential-geometric approach to integrable nonlinear PDE’s." (Jun-ichi Inoguchi, Mathematical Reviews, Issue 2006 i)
Les mer
Gives a concise and clear presentation of Darboux Transformations
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9781402030871
Publisert
2004-12-08
Utgiver
Vendor
Springer-Verlag New York Inc.
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet