This book covers the tunnel boring machine (TBM) performance classifications, empirical models, statistical and intelligent-based techniques which have been applied and introduced by the researchers in this field. In addition, a critical review of the available TBM performance predictive models will be discussed in details. Then, this book introduces several predictive models i.e., statistical and intelligent techniques which are applicable, powerful and easy to implement, in estimating TBM performance parameters. The introduced models are accurate enough and they can be used for prediction of TBM performance in practice before designing TBMs.   

Les mer

This book covers the tunnel boring machine (TBM) performance classifications, empirical models, statistical and intelligent-based techniques which have been applied and introduced by the researchers in this field. The introduced models are accurate enough and they can be used for prediction of TBM performance in practice before designing TBMs.

Les mer
Chapter 1.  An Overview of Field Classifications to Evaluate Tunnel Boring Machine Performance.- Chapter 2. Empirical, Statistical and Intelligent Techniques for TBM Performance Prediction. Chapter 3. Developing Statistical Models for Solving Tunnel Boring Machine Performance Problem.- Chapter 4. A Comparative Study of Artificial Intelligence Techniques to Estimate TBM Performance in Various Weathering Zones.
Les mer
Presents statistical and intelligent computational techniques to calculate the performance of tunnel boring machine (TBM) Includes a review of available TBM performance predictive models in detail Introduces predictive models that are powerful and easy to implement, in estimating TBM performance parameters
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9789811610332
Publisert
2021-03-14
Utgiver
Springer Verlag, Singapore; Springer Verlag, Singapore
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet

Om bidragsyterne

Danial Jahed Armaghani: I, currently work as a senior lecturer in the Faculty of Engineering, University of Malaya, Malaysia. I received my postdoc from Amirkabir University of Technology, Tehran, Iran and my Ph.D degree, in Civil-Geotechnics, from Universiti Teknologi Malaysia, Malaysia. My area of research is tunnelling, rock mechanics, piling technology, blasting environmental issues, applying artificial intelligence and optimization algorithms in geotechnics. I have published more than 100 papers in well-established ISI and Scopus journals, national and international conferences. 

Dr. Aydin Azizi holds a PhD degree in Mechanical Engineering. Certified as an official instructor for the Siemens Mechatronic Certification Program (SMSCP), he currently serves as a Senior Lecturer at the Oxford Brookes University. His current research focuses on investigating and developing novel techniques to model, control and optimize complex systems. Dr. Azizi’s areas of expertise include Control & Automation, Artificial Intelligence and Simulation Techniques. Dr. Azizi is the recipient of the National Research Award of Oman for his AI-focused research, DELL EMC’s “Envision the Future” completion award in IoT for “Automated Irrigation System”, and ‘Exceptional Talent’ recognition by the British Royal Academy of Engineering.