Deep learning, a branch of Artificial Intelligence and machine learning, has led to new approaches to solving problems in a variety of domains including data science, data analytics and biomedical engineering. Deep Learning for Data Analytics: Foundations, Biomedical Applications and Challenges provides readers with a focused approach for the design and implementation of deep learning concepts using data analytics techniques in large scale environments. Deep learning algorithms are based on artificial neural network models to cascade multiple layers of nonlinear processing, which aids in feature extraction and learning in supervised and unsupervised ways, including classification and pattern analysis. Deep learning transforms data through a cascade of layers, helping systems analyze and process complex data sets. Deep learning algorithms extract high level complex data and process these complex sets to relatively simpler ideas formulated in the preceding level of the hierarchy. The authors of this book focus on suitable data analytics methods to solve complex real world problems such as medical image recognition, biomedical engineering, and object tracking using deep learning methodologies. The book provides a pragmatic direction for researchers who wish to analyze large volumes of data for business, engineering, and biomedical applications. Deep learning architectures including deep neural networks, recurrent neural networks, and deep belief networks can be used to help resolve problems in applications such as natural language processing, speech recognition, computer vision, bioinoformatics, audio recognition, drug design, and medical image analysis.
Les mer
Section I Deep Learning Basics and Mathematical Background 1. Introduction to Deep Learning 2. Probability and information Theory 3. Deep Learning Basics 4. Deep Architectures 5. Deep Auto-Encoders 6. Multilayer Perceptron 7. Artificial Neural Network 8. Deep Neural Network 9. Deep Belief Network 10. Recurrent Neural Networks 11. Convolutional Neural Networks 12. Restricted Boltzmann Machines Section II Deep Learning in Data Science 13. Data Analytics Basics 14. Enterprise Data Science 15. Predictive Analysis 16. Scalability of deep learning methods 17. Statistical learning for mining and analysis of big data 18. Computational Intelligence Methodology for Data Science 19. Optimization for deep learning (e.g. model structure optimization, large-scale optimization, hyper-parameter optimization, etc) 20. Feature selection using deep learning 21. Novel methodologies using deep learning for classification, detection and segmentation Section III Deep Learning in Engineering Applications 22. Deep Learning for Pattern Recognition 23. Deep Learning for Biomedical Engineering 24. Deep Learning for Image Processing 25. Deep Learning for Image Classification 26. Deep Learning for Medical Image Recognition 27. Deep learning for Remote Sensing image processing 28. Deep Learning for Image and Video Retrieval 29. Deep Learning for Visual Saliency 30. Deep Learning for Visual Understanding 31. Deep Learning for Visual Tracking 32. Deep Learning for Object Segmentation and Shape Models 33. Deep Learning for Object Detection and Recognition 34. Deep Learning for Human Actions Recognition 35. Deep Learning for Facial Recognition 36. Deep Learning for Scene Understanding 37. Deep Learning for Internet of Things 38. Deep Learning for Big Data Analytics 39. Deep Learning for Clinical and Health Informatics 40. Deep Learning foe Sentiment Analysis
Les mer
Examines the latest advances in Deep Learning for data analytics
Presents the latest advances in Deep Learning for data analytics and biomedical engineering applications. Discusses Deep Learning techniques as they are being applied in the real world of biomedical engineering and data science, including Deep Learning networks, deep feature learning, deep learning toolboxes, performance evaluation, Deep Learning optimization, deep auto-encoders, and deep neural networks Provides readers with an introduction to Deep Learning, along with coverage of deep belief networks, convolutional neural networks, Restricted Boltzmann Machines, data analytics basics, enterprise data science, predictive analysis, optimization for Deep Learning, and feature selection using Deep Learning
Les mer

Produktdetaljer

ISBN
9780128197646
Publisert
2020-05-31
Utgiver
Vendor
Academic Press Inc
Vekt
450 gr
Høyde
235 mm
Bredde
191 mm
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
218

Om bidragsyterne

Himansu Das is working as an as Assistant Professor in the School of Computer Engineering, KIIT University, Bhubaneswar, Odisha, India. He has received his B. Tech and M. Tech degree from Biju Pattnaik University of Technology (BPUT), Odisha, India. He has published several research papers in various international journals and conferences. He has also edited several books of international repute. He is associated with different international bodies as Editorial/Reviewer board member of various journals and conferences. He is a proficient in the field of Computer Science Engineering and served as an organizing chair, publicity chair and act as member of program committees of many national and international conferences. He is also associated with various educational and research societies like IACSIT, ISTE, UACEE, CSI, IET, IAENG, ISCA etc., His research interest includes Grid Computing, Cloud Computing, and Machine Learning. He has also 10 years of teaching and research experience in different engineering colleges. Chittaranjan Pradhan is working at School of Computer Engineering, KIIT University, India. He obtained his Bachelors, Masters and PhD degree in Computer Science & Engineering stream. His research are includes Information Security, Image Processing, Data Analytics and Multimedia Systems. Dr. Pradhan has published more than 40 articles in the national and international journals and conferences. Also, he has been associated to a number of events organized at national and international level. He is also associated with various educational and research societies like IACSIT, ISTE, UACEE, CSI, IET, IAENG, ISCA etc. He has also experience of more than 10 years in teaching and research activities. Nilanjan Dey (Senior Member, IEEE) received the B.Tech., M.Tech. in information technology from West Bengal Board of Technical University and Ph.D. degrees in electronics and telecommunication engineering from Jadavpur University, Kolkata, India, in 2005, 2011, and 2015, respectively. Currently, he is Associate Professor with the Techno International New Town, Kolkata and a visiting fellow of the University of Reading, UK. He has authored over 300 research articles in peer-reviewed journals and international conferences and 40 authored books. His research interests include medical imaging and machine learning. Moreover, he actively participates in program and organizing committees for prestigious international conferences, including World Conference on Smart Trends in Systems Security and Sustainability (WorldS4), International Congress on Information and Communication Technology (ICICT), International Conference on Information and Communications Technology for Sustainable Development (ICT4SD) etc. He is also the Editor-in-Chief of International Journal of Ambient Computing and Intelligence, Associate Editor of IEEE Transactions on Technology and Society and series Co-Editor of Springer Tracts in Nature-Inspired Computing and Data-Intensive Research from Springer Nature and Advances in Ubiquitous Sensing Applications for Healthcare from Elsevier etc. Furthermore, he was an Editorial Board Member Complex & Intelligence Systems, Springer, Applied Soft Computing, Elsevier and he is an International Journal of Information Technology, Springer, International Journal of Information and Decision Sciences etc. He is a Fellow of IETE and member of IE, ISOC etc.