This book examines the use of biomedical signal processing—EEG, EMG, and ECG—in analyzing and diagnosing various medical conditions, particularly diseases related to the heart and brain. In combination with machine learning tools and other optimization methods, the analysis of biomedical signals greatly benefits the healthcare sector by improving patient outcomes through early, reliable detection. The discussion of these modalities promotes better understanding, analysis, and application of biomedical signal processing for specific diseases.The major highlights of Biomedical Signal Processing for Healthcare Applications include biomedical signals, acquisition of signals, pre-processing and analysis, post-processing and classification of the signals, and application of analysis and classification for the diagnosis of brain- and heart-related diseases. Emphasis is given to brain and heart signals because incomplete interpretations are made by physicians of these aspects in several situations, and these partial interpretations lead to major complications.FEATURES Examines modeling and acquisition of biomedical signals of different disorders Discusses CAD-based analysis of diagnosis useful for healthcare Includes all important modalities of biomedical signals, such as EEG, EMG, MEG, ECG, and PCG Includes case studies and research directions, including novel approaches used in advanced healthcare systemsThis book can be used by a wide range of users, including students, research scholars, faculty, and practitioners in the field of biomedical engineering and medical image analysis and diagnosis.
Les mer
This book examines the use of biomedical signal processing in analyzing and diagnosing various medical conditions, particularly diseases related to the heart and brain. In combination with machine learning tools and other optimization methods, analysis of biomedical signals improves patient outcomes through early, reliable detection.
Les mer
1. Automatic Sleep EEG Classification with Ensemble Learning Using Graph Modularity 2. Recognition of Distress Phase Situation in Human Emotion EEG Physiological Signals 3. Analysis and Classification of Heart Abnormalities 4. Diagnosis of Parkinson’s Disease Using Deep Learning Approaches: A Review 5. Classifying Phonological Categories and Imagined Words from EEG Signal 6. Blood Pressure Monitoring Using Photoplethysmogram and Electrocardiogram Signals 7. Investigation of the Efficacy of Acupuncture Using Electromyographic Signals 8. Appliance Control System for Physically Challenged and Elderly Persons through Hand Gesture-Based Sign Language 9. Computer-Aided Drug Designing – Modality of Diagnostic System 10. Diagnosing Chest-Related Abnormalities Using Medical Image Processing through Convolutional Neural Network 11. Recent Trends in Healthcare System for Diagnosis of Three Diseases Using Health Informatics 12. Nursing Care System Based on Internet of Medical Things (IoMT) through Integrating Non-Invasive Blood Sugar (BS) and Blood Pressure (BP) Combined Monitoring 13. Eye Disease Detection from Retinal Fundus Image Using CNN
Les mer
Produktdetaljer
ISBN
9780367705879
Publisert
2021-07-01
Utgiver
Vendor
CRC Press
Vekt
603 gr
Høyde
234 mm
Bredde
156 mm
Aldersnivå
U, G, 05, 01
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
316
Om bidragsyterne
Dr. Varun Bajaj has been working as a faculty in the discipline of Electronics and Communication Engineering, at Indian Institute of Information Technology, Design and Manufacturing (IIITDM) Jabalpur, India since 2014.
G R Sinha is Adjunct Professor at International Institute of Information Technology Bangalore (IIITB) and currently deputed as Professor at Myanmar Institute of Information Technology (MIIT) Mandalay Myanmar.
Dr. Chinmay Chakraborty is working as an Assistant Professor (Sr.) in the Dept. of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, India.