"...researchers...introduce independent component analysis as a statistical and computational technique for revealing hidden factors that underlie sets of random variables, measurements, or signals." (SciTech Book News, Vol. 25, No. 4, December 2001)
A comprehensive introduction to ICA for students and practitioners Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more. Independent Component Analysis is divided into four sections that cover: * General mathematical concepts utilized in the book * The basic ICA model and its solution * Various extensions of the basic ICA model * Real-world applications for ICA models Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.
Les mer
A comprehensive introduction to ICA for students and practitioners Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing.
Les mer
Preface. Introduction. MATHEMATICAL PRELIMINARIES. Random Vectors and Independence. Gradients and Optimization Methods. Estimation Theory. Information Theory. Principal Component Analysis and Whitening. BASIC INDEPENDENT COMPONENT ANALYSIS. What is Independent Component Analysis? ICA by Maximization of Nongaussianity. ICA by Maximum Likelihood Estimation. ICA by Minimization of Mutual Information. ICA by Tensorial Methods. ICA by Nonlinear Decorrelation and Nonlinear PCA. Practical Considerations. Overview and Comparison of Basic ICA Methods. EXTENSIONS AND RELATED METHODS. Noisy ICA. ICA with Overcomplete Bases. Nonlinear ICA. Methods using Time Structure. Convolutive Mixtures and Blind Deconvolution. Other Extensions. APPLICATIONS OF ICA. Feature Extraction by ICA. Brain Imaging Applications. Telecommunications. Other Applications. References. Index.
Les mer
A comprehensive introduction to ICA for students and practitioners Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more. Independent Component Analysis is divided into four sections that cover: * General mathematical concepts utilized in the book * The basic ICA model and its solution * Various extensions of the basic ICA model * Real-world applications for ICA models Authors Hyvärinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.
Les mer
"...researchers...introduce independent component analysis as a statistical and computational technique for revealing hidden factors that underlie sets of random variables, measurements, or signals." (SciTech Book News, Vol. 25, No. 4, December 2001)
Les mer
Produktdetaljer
ISBN
9780471405405
Publisert
2001-06-29
Utgiver
Vendor
Wiley-Interscience
Vekt
826 gr
Høyde
241 mm
Bredde
163 mm
Dybde
29 mm
Aldersnivå
UP, P, 05, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
504
Om bidragsyterne
AAPO HYVÄRINEN, PhD, is Senior Fellow of the Academy of Finland and works at the Neural Networks Research Center of Helsinki University of Technology in Finland.JUHA KARHUNEN and ERKKI OJA are professors at the Neural Networks Research Center of Helsinki University of Technology in Finland.