Presents Results from a Very Active Area of ResearchExploring an active area of mathematics that studies the complexity of equivalence relations and classification problems, Invariant Descriptive Set Theory presents an introduction to the basic concepts, methods, and results of this theory. It brings together techniques from various areas of mathematics, such as algebra, topology, and logic, which have diverse applications to other fields.After reviewing classical and effective descriptive set theory, the text studies Polish groups and their actions. It then covers Borel reducibility results on Borel, orbit, and general definable equivalence relations. The author also provides proofs for numerous fundamental results, such as the Glimm–Effros dichotomy, the Burgess trichotomy theorem, and the Hjorth turbulence theorem. The next part describes connections with the countable model theory of infinitary logic, along with Scott analysis and the isomorphism relation on natural classes of countable models, such as graphs, trees, and groups. The book concludes with applications to classification problems and many benchmark equivalence relations. By illustrating the relevance of invariant descriptive set theory to other fields of mathematics, this self-contained book encourages readers to further explore this very active area of research.
Les mer
Bringing together techniques from various areas of mathematics, this book presents an introduction to the basic concepts, methods, and results of invariant descriptive set theory. It reviews descriptive set theory; studies Polish groups and their actions; and covers Borel reducibility results on Borel, orbit, and definable equivalence relations.
Les mer
Preface. Polish Group Actions. Theory of Equivalence Relations. Countable Model Theory. Applications to Classification Problems. Appendix. References. Index.

Produktdetaljer

ISBN
9781584887935
Publisert
2008-09-03
Utgiver
Vendor
Chapman & Hall/CRC
Vekt
900 gr
Høyde
234 mm
Bredde
156 mm
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
392

Forfatter

Om bidragsyterne

Gao, Su