"Strict finitism is a very attractive view that has generally suffered just from the sense that it couldn't reproduce enough mathematics. This book takes strides toward removing that worry and making the view a viable alternative." James Tappenden, University of Michigan, Ann Arbor, U.S.A.

This book intends to show that radical naturalism (or physicalism), nominalism and strict finitism account for the applications of classical mathematics in current scientific theories. The applied mathematical theories developed in the book include the basics of calculus, metric space theory, complex analysis, Lebesgue integration, Hilbert spaces, and semi-Riemann geometry (sufficient for the applications in classical quantum mechanics and general relativity). The fact that so much applied mathematics can be developed within such a weak, strictly finitistic system, is surprising in itself. It also shows that the applications of those classical theories to the finite physical world can be translated into the applications of strict finitism, which demonstrates the applicability of those classical theories without assuming the literal truth of those theories or the reality of infinity.Both professional researchers and students of philosophy of mathematics will benefit greatly from reading this book.
Les mer
This book intends to show that radical naturalism (or physicalism), nominalism and strict finitism account for the applications of classical mathematics in current scientific theories.
1. Introduction.- 2. Strict Finitism.- 3. Calculus.- 4. Metric Space.- 5. Complex Analysis.- 6. Integration.- 7. Hilbert Space.- 8. Semi-Riemann Geometry.- References.- Index.
This book intends to show that radical naturalism (or physicalism), nominalism and strict finitism account for the applications of classical mathematics in current scientific theories. The applied mathematical theories developed in the book include the basics of calculus, metric space theory, complex analysis, Lebesgue integration, Hilbert spaces, and semi-Riemann geometry (sufficient for the applications in classical quantum mechanics and general relativity). The fact that so much applied mathematics can be developed within such a weak, strictly finitistic system, is surprising in itself. It also shows that the applications of those classical theories to the finite physical world can be translated into the applications of strict finitism, which demonstrates the applicability of those classical theories without assuming the literal truth of those theories or the reality of infinity.Both professional researchers and students of philosophy of mathematics will benefit greatly from reading this book.
Les mer
Provides the first logical analysis of the applicability of infinite mathematics to finite physical things, by eliminating infinity in the applications Defends radical naturalism, nominalism and strict finitism while offering a literally true explanation of applicability Accessible to readers with only a knowledge of calculus and the basics of mathematical logic
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9789400713468
Publisert
2011-07-06
Utgiver
Vendor
Springer
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet

Forfatter

Om bidragsyterne

Feng Ye is a professor of philosophy at Peking University, China. He has a B.S. degree in mathematics from Xiamen University, China, and a Ph.D. degree in philosophy from Princeton University, U.S.A.. His research areas include constructive and finitistic mathematics, philosophy of mathematics, and philosophy of mind and language. He used to prove, for the first time, a constructive version of the spectral theorem and Stone’s theorem for unbounded linear operators on Hilbert spaces. He is currently developing a radically naturalistic, nominalistic, and strictly finitistic philosophy of mathematics, a naturalistic theory of content, and a naturalistic interpretation of modality. His research articles have been published in The Journal of Symbolic Logic, Philosophia Mathematica, and Synthese, among others. He is also the author of the book Philosophy of Mathematics in the 20th Century: a Naturalistic Commentary (in Chinese, Peking University Press, 2010). His philosophical interests revolve around naturalism.